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ABSTRACT 
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Alkan ALKAYA 

 

ÇUKUROVA UNIVERSITY  

INSTITUTE OF NATURAL AND APPLIED SCIENCES 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 

 Supervisor : Assoc. Prof. Dr. İlyas EKER 

   Year: 2012, Pages: 165 

 Jury : Assoc. Prof. Dr. İlyas EKER 

  : Prof. Dr. Mehmet TÜMAY 

  : Assist. Prof. Dr. Ramazan ÇOBAN 

  : Assoc. Prof. Dr. Hüseyin CANBOLAT 

  : Assoc. Prof. Dr. Zekeriya TÜFEKÇİ 

 

Fault Detection and Diagnosis (FDD) has become an attractive topic with 

increasing attention to improve efficiency, reliability and safety of modern 

engineering. The methodology used in FDD is clearly dependent on process and sort 

of available information, divided in two categories: model-based methods and data-

driven-based methods. In the present research, observer-based and statistical 

information based Principal Component Analysis (PCA) method have been 

performed. 

PCA is a statistical process monitoring technique that has been widely used in 

industrial applications. PCA methods for Fault Detection (FD) use data collected 

from a steady-state process to monitor T
2
- and Q- statistics with a fixed threshold. 

For the systems where transient values of the processes must be taken into account, 

the usage of fixed threshold in PCA method causes false alarms and missing data that 

significantly compromise the reliability of the monitoring systems. In this thesis, two 

new methods based on PCA are proposed to overcome false alarms which occur in 

the transient states according to changing process conditions and the missing data 

problem. The proposed methods are implemented and validated experimentally on an 

electromechanical and process control system.  

 

Keywords: Observer, PCA, Fault detection, Wavelet, Experimental application. 
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ÖZ 

 

DOKTORA TEZİ 

 

ELEKTROMEKANİK VE PROSES KONTROL SİSTEMLERİ İÇİN VERİ 

TABANLI YENİ BİR HATA ALGILAMA YÖNTEMİ 
 

Alkan ALKAYA 

 

ÇUKUROVA ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI 

 

 Danışman : Doç. Dr. İlyas EKER 

   Year: 2012, Sayfa: 165 

 Jüri : Doç. Dr. İlyas EKER 

  : Prof. Dr. Mehmet TÜMAY 
  : Yrd. Doç. Dr. Ramazan ÇOBAN 

  : Doç. Dr. Hüseyin CANBOLAT 

  : Doç. Dr. Zekeriya TÜFEKÇİ 

 

Hata Algılama ve Teşhisi (HAT), modern mühendislik alanındaki sistemlerin 

verimi, güvenliği ve güvenilirliğinin geliştirilmesine gösterilen ilgilin artması ile 

birlikte çok önemli ve dikkat çekici bir konu haline gelmiştir. Hata algılamada 

kullanılan yöntem, süreç modeline ve mevcut bilgilerin elde edilmesine bağlıdır ve 

bu iki kategoriye ayrılır: model tabanlı teknikler ve veri tabanlı teknikler. Bu 

çalışmada, gözleyici tabanlı ve istatistiksel bilgiye dayalı Temel Bileşenler Analizi 

(TBA) metodu gerçekleştirilmiştir.  

TBA, endüstriyel uygulamalarda yaygın olarak kullanılan istatistiksel bir 

süreç takip tekniğidir. TBA metodu süreçlerin kararlı durumlarından toplanan 

verilerin T
2
 ve Q görüntülerinde sabit bir eşik değeri ile takip ederek hataları algılar. 

Sistemlerin geçiş süreçleri de hesaba katıldığı anda bu klasik TBA yöntemi hata 

algılama sistemlerinin güvenliğini riske atacak yanlış alarmlar ve eksik hata verileri 

ortaya çıkarmaktadır. Bu tez çalışmasında, geçiş sürecinde meydana gelen yanlış 

alarmları ve eksik hata verilerini giderecek TBA yöntemine dayalı iki yeni metot 

önerilmiştir. Önerilen metotlar deneysel olarak elektromekanik ve süreç kontrol 

sistemleri üzerinde test edilmiştir. 

 

Anahtar Kelimeler: Gözleyici, TBA, Hata algılama, Dalgacık, Deneysel uygulama. 
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1. INTRODUCTION 

 

1.1. Background and Motivation 

 

The growing demand for high performance, efficiency, safety and reliability 

and increasing complexity of the technical processes has been of great interest in the 

development of fault detection methods (Angeli, 2004). The advent of the computer 

in 1970s and its increasing application in decentralized process automation systems 

since 1975 was the beginning of computationally more involved and soft-based fault 

detection algorithms (Isermann, 2006). First publications about the fault detection 

methods appeared in connection with the aerospace systems (Beard, 1971) and 

chemical plants (Himmelblau, 1978). The early detection of faults may help to avoid 

system breakdowns and product deterioration.  Fault Detection (FD) algorithms and 

their applications to a wide range of industrial processes have been the subject of 

intensive research over the past two decades (Isermann, 2005; Odgaard et al., 2008; 

Treetrong et al., 2009; Karami et al., 2010). The methods on Fault Detection and 

Diagnosis (FDD) can be divided into two main groups, the model-based and data 

driven-based methods (Venkatasubramanian et al., 2003a; 2003b; 2003c). 

Model-based FD methods are based on comparing the behaviors of the actual 

plant and a mathematical model of the system (Hammouri et al., 2010). The method 

uses signal residuals, which indicate changes between the real process and the 

process model. Residual generation can be performed in different ways: parity 

equations (Zhong et al., 2009), observer-based generation (Peng et al., 2010), and the 

methods based on parameter estimation (Fischer et al., 2007). Neural networks and 

fuzzy systems have also been used in model-based FDI algorithms (Yüksel et al., 

2010). On the other hand, reported applications or real-time implementation of the 

schemes are still very few. Observer-based and parameter estimation methods are the 

most frequently applied methods for the fault detection (Isermann, 1997). However, 

obtaining a complete and robust mathematical model is difficult due to process 

complexity and dimension. Therefore the method is generally suitable only for 
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additive faults and limited to processes with a small number of variables (Yoon et al., 

2000).  

The data-based FD methods can be used to solve these problems 

(Venkatasubramanian et al., 2003a). The advantage of these methods is that the 

model of the system is not necessary to know in order to make a conclusion on a 

fault appearance. This means that the method is appropriate for the systems that 

cannot be easily or ever modeled, or for which the model is nonlinear, hybrid, or 

structurally ill-posed. Another advantage of the method is that, in addition to the 

additive faults, it is possible to detect multiplicative faults too. For the data-based 

methods, only the availability of large amount of historical process data is needed 

(Venkatasubramanian et al., 2003a). With the development of computer and data 

storage facilities, nearly every industrial process now routinely collects and stores 

massive amounts of data on many process variables. Efficient utilization of this large 

pool of data can lead to significant improvement in two areas. First, the data can be 

used to monitor the performance of the process over time for the fault detection. 

Second, frequently measured process variables can be used to infer the quality 

variables and an inferential control scheme can be developed. In situations, 

multivariate statistical methods such as Principal Component Analysis (PCA) and 

Partial Least Squares (PLS) can play a major role. These methods have been 

successfully applied to solve a wide range of multivariate problems in the chemical 

processes (Elshenawy et al., 2010), semiconductor processing (Zhiqiang et al., 2010), 

machining processes (Tsung, 2000), waste water treatment (Lennox and Rosen, 

2002), nuclear power systems (Baraldi et al., 2010), air-conditioning processes 

(Wang et al., 2010), building central chilling systems (Youming and Lili, 2009; 

2010). Most processes are well equipped with the sensors to realize automatic 

monitoring and control. However, most of the research studies are based on 

simulation results (Tsung, 2000; Baraldi et al., 2010). 

 Although the conventional PCA method has been highly successfully used for 

monitoring purposes, its best applications are restricted to analyze steady-state data 

containing linear relationships between the variables (Zvokelj et al., 2010). Because 

these processes are fairly rare, various modifications of the PCA method have been 
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developed, including the dynamic PCA (Pöllänen et al., 2006), non-linear PCA (Jia 

et al., 2010), multi-block PCA (Westerhuis et al., 1998), multi-way PCA (Wold et 

al., 1987), moving PCA (Kano et al., 2001) and recursive PCA (Li et al., 2000). 

Existing methods for the fault detection have largely focused on the steady-

state operations and are not directly applicable during the transitions (Pöllänen et al., 

2006; Jia et al., 2010; Westerhuis et al., 1998; Kano et al., 2001; Li et al., 2000). 

Applying a PCA method to such a transient process (like servo systems) can produce 

excessive number of false alarms or missed detection of process faults which 

significantly compromises the reliability of the monitoring system. Therefore, a 

novel PCA fault detection method is required that explicitly caters for the non-steady 

states and wide operating condition changes during transitions. 

The data collected from industrial process often contain measurement noise 

that causes missing fault (interrupted) signal components even if the PCA method is 

used. Therefore, the noise has to be removed before PCA analysis for robust fault 

detection.  

Extraction of the weak signals and de-noising are very important for fault 

diagnostics, especially for early fault detection, in which cases features are very 

weak and masked by the noise (Peng et al., 2004). The noises are often stochastic 

signals with broadband, whose frequency band will overlap with the interested 

signals. Therefore it is difficult to eliminate the noise from the signals effectively 

with general filter-based methods such as exponential, polynomial, median and 

Kalman filters (Shao et al., 1999). In addition, to implement some filtering 

algorithms it is necessary to have future values, e.g. in the median filter. In this 

respect they are unsuitable for on-line application. The Wavelet Transform (WT) 

addresses some of these limitations (Shao et al., 1999). 

The wavelet transform has attracted recent interest in applied mathematics for 

signal processing and fault detection (Hui et al., 2011; Wu et al., 2011; Rafiee et al., 

2011). This new mathematical technique has been demonstrated to be fast in 

computation with localization and quick decay properties in contrast to existing 

popular methods, especially, the Fast Fourier Transform (FFT).  One of the main 

features of WT is that it may decompose a signal directly according to the frequency 
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and represent it in the frequency domain distribution state in the time domain. In the 

transformation, both time and frequency information of the signal are retained. 

 

1.2. Research Objectives  

 

The present research focuses on model and data driven-based fault detection 

and diagnosis methods and experimental application to electromechanical and 

process control systems. 

 

The objectives are to 

 

 Describe the terminology used in the field of fault detection and diagnosis, 

fault types and classification. 

 Provide an overview of various detection methods from different 

perspectives. 

 Develop and validate model-based (observer) fault detection scheme for 

abrupt, incipient and intermittent faults.  

 Develop effective data-driven methodologies for fault detection and 

diagnosis. 

 Develop conventional PCA method for process fault detection (Conventional 

PCA based Q and T
2
 – statistics for steady-state conditions). 

 Propose a new threshold based PCA method that is sensitive to transient 

states and changes in operation (servo tracking system). 

 Improve the conventional monitoring charts for PCA fault detection purpose. 

These monitoring charts are: 

a) Combined fixed and adaptive threshold, combT . 

b) Variance sensitive adaptive threshold, vsaT . 

 Propose a wavelet based PCA fault detection method. 
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 Evaluate performance of the proposed method with experimental applications 

(Electromechanical and process control systems). 

 Results of the proposed methods and conventional methods are compared in 

terms of sensitivity to 

a) Detect fault accurately.  

b) Eliminate false alarm occurring in transient states. 

c) Eliminate missing fault problem. 

 

1.3. Contributions of Research 

 

The main differences and important contributions of this research can be 

summarized as follows:  

 

 Application of the observer-based fault detection method to an 

electromechanical system. 

 A combined threshold PCA method is proposed and implemented to prevent 

false alarm when transient states taken into account. 

 A variance sensitive adaptive threshold PCA method is proposed and 

implemented to overcome missing fault alarm. 

 Wavelet-based combined PCA method is implemented to prevent the false 

alarms and to produce uninterrupted fault alarm signal. 

 Conventional and proposed PCA methods are implemented experimentally on 

a DC motor system and process control systems.  

 

The framework of the present research is presented in Figure 1.1. There are 

two main branches, one is the general theory development, and the other is the 

application to dynamical systems. The circles in the chart denote the existing theories 

that have been considered in the research and the patterned square are the original 

contributions of the current study. 
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Figure 1.1. Framework of the Present Research 

 

1.4. Thesis Outline 

 

The thesis is organized as follows: 

 

Chapter 1: Introduction 

The first chapter comprises of the introduction of the research, research 

background, motivation, objectives and contributions of the current research. 
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Chapter 2: Fault Detection and Diagnosis (FDD) 

The second chapter of the thesis first starts to give requirements of FDD 

methods in engineering systems. A common terminology and fault types in the fault  

detection  and  diagnosis  framework  in  order  to  comment  on  some developments 

in the field of FDD are presented. Literature survey for the various fault detection 

methods from different perspectives is also provided. Strengths and weaknesses of 

each fault detection methods are outlined. Basic principles of the model-based fault 

detection methods are discussed, followed by a detailed description of observer-

based fault detection method studied in the thesis. In addition, the robustness is 

introduced. 

 

Chapter 3: Data-Driven-Based FDD: Concept and Theory 

The third chapter discusses a multivariate statistical data-driven fault 

detection method, PCA. Different PCA methods such as conventional PCA, 

Dynamic PCA, Nonlinear PCA, Multi block PCA, Recursive PCA, Moving PCA, 

and Multi-scale PCA, are presented. The methodology and applications area are 

given for each method. This chapter also presents calculation of PCA model and 

monitoring statistics (T
2
 and Q) for fault detection. Combined Threshold (Tcomb) and 

Variance Sensitive Adaptive Threshold (Tvsa) are described and presented step by 

step. Wavelet theory including de-nosing, Multi Resolution Analysis (MRA) and 

applications in fault detection is emphasized. 

 

Chapter 4: Experimental Setup 

Experimental setup and preliminaries are introduced in chapter 4. 

Mathematical model of the electromechanical plant and properties of the process 

control systems are described. Technical information of Data Acquisition Card 

(DAQ) and computer used in the experiments are presented.  
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Chapter 5: Experiments and Results 

Observer-based fault detection, variance sensitive adaptive threshold and 

proposed wavelet-based combined PCA methods are implemented. Several 

experimental tests are performed to demonstrate the performance of proposed 

methods. The capabilities of the proposed methods are deeply analyzed during 

steady-state and transient-state operation. The results are presented and compared 

with the results obtained by means of conventional approach. 

 

Chapter 6: Conclusions 

The last chapter gives concluding remarks, summarizes the main 

contributions of the thesis and discusses directions for future work. 

Finally, all the references used in the thesis, biographical information of the 

author and sections of the Appendix are presented. 

 

1.5. Conclusions  

 

 The first chapter of the thesis is to provide basic features of the research 

consisting the research motivation, problem statement, research objectives, 

contributions and scopes. The contents of the chapters composing the thesis and the 

main contributions were presented. 
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2. FAULT DETECTION AND DIAGNOSIS (FDD) 

 

2.1. Importance of FDD 

 

Fault detection and diagnosis has been becoming more and more important 

for process monitoring because of the increasing demand for higher performance as 

well as for increased safety and reliability of dynamic systems (Isermann, 2011). 

Fault detection and diagnosis deals with the timely detection, diagnosis and 

correction of abnormal conditions of faults in a process. The early detection of the 

occurrence of faults is critical in avoiding product deterioration, performance 

degradation, major damage to the machinery itself and damage to human health or 

even loss of lives. The quick and correct diagnosis of the faulty component then 

facilitates the making of appropriate and optimal decisions on emergency and 

corrective actions, and on repairs. These aspects can minimize downtime, increase 

the safety of plant operations and reduce manufacturing costs (Isermann, 2011). 

Hence, fault diagnosis is a major research topic attracting considerable interest from 

industrial practitioners as well as academic researchers. 

A typical operation and maintenance process using automated FDD can be 

viewed as having four distinct functional processes (Katipamula and Brambley, 

2005), as shown in Figure 2.1 and similar process descriptions have been provided in 

(Isermann, 1984; Rossi and Braun, 1997). The first step is to monitor the physical 

system or device and detect any abnormal conditions (problems). This step is 

generally referred to as fault detection. When an abnormal condition is detected, fault 

diagnosis is used to evaluate the fault and determine its causes. These two steps 

constitute the FDD process. Following diagnosis, fault evaluation assesses the size 

and significance of the impact on system performance (in terms of energy use, cost, 

availability, or effects on other performance indicators). Based on the fault 

evaluation, a decision is then made on how to respond to the fault (e.g., by taking a 

corrective action or possibly even no action).  
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Figure 2.1. Generic Application of Fault Detection and Diagnostics to Operation and 

Maintenance of Engineered Systems. 

 

FDD itself is frequently described as consisting of three key processes: fault 

detection, fault isolation, and fault identification. The first, fault detection, is the 

process of determining that some fault has occurred in the system. The second 

involves isolating the specific fault that occurred, including determining the kind of 

fault, the location of the fault, and the time of detection. The third process, fault 

identification, includes determining the size and time-variant behavior of a fault. 

Together, fault isolation and fault identification are commonly termed fault 

diagnosis. 

There is a wide literature documentation on process fault diagnosis ranging 

from analytical methods to artificial intelligence and statistical approaches 

(Katipamula and Brambley, 2005). From a modeling perspective, there are methods 

that require accurate process models, semi-quantitative models or qualitative models. 

However, some methods that do not assume any form of model information rely only 

on historic process data. Therefore, this chapter is mainly devoted to introduce the 

terminology used in the field of fault detection and diagnosis, fault types and 
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classification and to provide an overview of various diagnostic methods from 

different perspectives. 

 

2.2. Fault Classification 

 

The types of faults depend basically on their location within the system, the 

number of components that can be affected and their temporal evolution (Isermann, 

2011). Taking into account the effects of the faults, these are classified as additive 

faults (those which correspond to sensor and actuator faults) and multiplicative faults 

(or parametric). 

Additive process faults: These are unknown inputs acting on the plant, 

which are normally zero and, when present, can cause a change in the plant 

outputs independent of the known inputs. 

Multiplicative process faults: These are changes (abrupt or gradual) in some 

plant parameters. They may cause changes in the plant outputs which also 

depend on the magnitude of the known inputs. Such faults describe the 

deterioration of the plant equipment, such as contamination, clogging, or the 

partial or total loss of the power. 

In literature faults can take place in different parts of a system, and are 

classified as actuator faults, sensor faults and component faults (Kanev, 2004). 

Actuator faults represent partial or complete loss of control action. Total actuator 

fault can occur, for instance, as a result of a breakage, cut or burned wiring, 

shortcuts, or the presence of outer body in the actuator. Despite of the input applied 

to an actuator, it produces no actuation. This is an example of a completely lost 

actuator (stuck actuator). Partially failed actuator produces only a part of the normal 

(i.e., under nominal operating condition) actuation. It can result from, e.g., hydraulic 

or pneumatic leakage, increased resistance or fall in the supply voltage.  

 Sensor faults represent incorrect reading from the sensors. They also are subdivided 

into partial and total. Produced information is not related to value of the measured 

physical parameter in case of the total actuator fault. They can be due to broken 
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wires, lost contact with the surface, etc. The output containing useful information 

could still be retrieved. This can, for instance, be a gain reduction, a biased 

measurement or increased noise.  

  

Component faults are faults in the components of a complex system, i.e., all faults 

that cannot be categorized as sensor or actuator faults. These faults represent 

changing in the damping constant, etc., that are often due to structural damages. They 

often result in a change in the dynamical behavior of a nonlinear complex system. 

They are the most frequently encountered types in fault family to deal with.  

Regarding the time dependency of faults, they can be distinguished as 

illustrated in Figure 2.2. 

Abrupt faults occur instantaneously often as a result of hardware damage. Usually 

they are very severe as they affect the performance or the stability of the system. 

Incipient faults represent slow in time parametric changes, often as a result of aging. 

They are more difficult to detect. 

Intermittent faults are faults that appear and disappear repeatedly; for instance, due 

to a partially damaged wiring.  

 

 

Figure 2.2. Time Characteristics of Faults. 
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2.3. Historical Background and Literature Survey 

 

FDD methods can be classified into two broad categories, model-based 

methods and data-driven-based methods (Venkatasubramanian et al., 2003a; 2003b; 

2003c). The two categories differ by the knowledge used to diagnose the cause of 

faults, although both may use simulation models and measurement data. Model-

based methods use “priori knowledge” (knowledge available in advance) to identify 

the differences between model simulation results and actual operation measurements. 

Simulation models are commonly based on first principles and do provide process 

insight.  However, they may not fit the process data that well and are not able to 

explain systematic variation.  Data-based methods may not use any physical 

knowledge; instead, they can be driven completely by recorded measurement data.  

These data driven models fit the data properly, but cannot be generalized to different 

situations and do not always generate good process insight.  

Model-based methods are further divided into quantitative and qualitative 

modeling methods. Quantitative models are based on mathematical relationship 

derived from the underlying physical knowledge. Quantitative methods rely on 

explicit mathematical models of a system to detect and diagnose faults. By 

understanding the physical relationships and characteristics of a system, 

mathematical equations to represent each component of the system can be developed 

and solve to simulate the steady and transient behavior of the systems.  Another 

broad method is qualitative modeling, which uses rule-based methods developed 

based on priori knowledge.  Qualitative models use the qualitative rule relationships 

to detect and diagnose faults instead of quantitative mathematical equations. The 

rules are derived from expert knowledge, process history data and quantitative 

models simulation data.  Expert knowledge is normally summarized to a database in 

the form of if-then statements.  

Data-based models are derived from process history data, and are subdivided 

into black box model and gray box model. Their difference is whether model 

parameters have physical meaning. Black box models use non-physical based 



2. FAULT DETECTION AND DIAGNOSIS (FDD) Alkan ALKAYA 

14 

relationship to represent the characteristics of a system. Model parameters do not 

represent actual physical properties. Black box models use techniques such as linear 

or multiple linear regression, artificial neural networks, and fuzzy logic. In a gray 

box model, the model parameters are determined based on physical principles.  

Parameter estimation techniques are often used to obtain those parameters from 

measurement data.  Comparing with the black box modeling, the gray box modeling 

needs higher-level user expertise to form the model parameters and estimate 

parameter values. 

An overview on general FDD concepts and a chart for classification of 

diagnostic algorithms is given (Venkatasubramanian et al., 2003a) as shown in 

Figure 2.3. FDD methods are broadly classified into two categories: model-based 

methods and data-driven-based methods.  

 

 

Figure 2.3. Classification of Fault Detection Methods. 
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2.3.1. Model-based Fault Detection Methods 

 

2.3.1.1. Quantitative Model-Based Methods 

 

Most of the work on quantitative model-based approaches has been based on 

using general input-output and state space models to generate residuals. Different 

approaches for fault detection using mathematical models have been developed in the 

last few decades (Isermann, 2005). These approaches can be classified into observer, 

parity space and parameter estimation methods (Isermann, 2011). 

Observer or filter-based: The basic idea of the observer or filter-based approaches 

is to estimate the states or outputs of the system from the measurements by using 

either Luenberger's observers in a deterministic setting (Chen et al., 2010) or 

Kalman's filters in a stochastic case (Villez et al., 2011). The flexibility in selecting 

observer gains has been studied (Frank and Ding, 1997). Integrated design of 

observer based Fault Detection (FD) for a class of uncertain nonlinear systems with 

Lipschitz non-linearities is studied (Chen et al., 2011). The freedom in the design of 

the observer can be used to enhance the residuals for isolation. The dynamics of the 

response can be controlled, within certain limits, by placing the poles of the observer.  

In recent years, several model-based methods have been developed 

(Isermann, 2006) and especially observer-based methods have been given more 

attention (Edwards, et al., 2007; Shields, 2005). For example sliding mode 

approaches (Edwards et al., 2000), geometric approach (Persis and Isidori, 2001) and 

adaptive control (Zhang et al., 2002) are combined successfully with observer-based 

fault detection and diagnosis techniques. 

Parity space: Parity equations are rearranged and usually transformed variants of the 

input-output or state-space models of the plant (Zhong et al., 2009). The essence is to 

check the parity (consistency) of the plant models with sensor outputs 

(measurements) and known process inputs. The idea of this approach is to rearrange 

the model structure to get the best fault isolation. Concept of the parity relations was 

introduced by (Chow and Willsky, 1984). Further developments have been made by 
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(Gertler et al., 1995; Zhang et al., 2006) among others. There is a fundamental 

equivalence between parity relations and the observer-based methods. Both methods 

produce identical residuals if the generators are designed for the same specification 

(Ding and Jeinsch, 1999). 

Parameter Estimation: The model-based FDI can also be achieved by means of 

using the system identification techniques if the basic structure of the model is 

known (Isermann, 2011). This approach is based on the assumption that faults are 

reflected in the physical system parameters such as friction, mass, resistance, etc. 

The basic idea is that the parameters of the actual process are estimated on-line using 

well known parameter estimation methods and the results are compared with the 

parameters obtained initially under the fault-free case. Any discrepancy indicates a 

fault. The parameter estimation may be more reliable than the analytical redundancy 

methods, but it is also more demanding in terms of on-line computation and input 

excitation requirements. A relationship has been found between parity relations and 

parameter estimation as well (Gertler, 2000). 

It can be seen that one of the major advantages of using the quantitative 

model-based approach is that we will have some control over the behavior of the 

residuals. However, several factors such as system complexity, high dimensionality, 

process nonlinearity and/or lack of good data often render it very difficult even 

impractical, to develop an accurate mathematical model for the system. This, of 

course, limits the usefulness of this approach in real industrial processes 

(Venkatasubramanian et al., 2003a). 

 

Advantages and Disadvantages of Quantitative Models 

Advantages of FDD based on quantitative models include (Katipamula and 

Brambley, 2005): 

 Models are based on sound physical or engineering principles. 

 They provide the most accurate estimators of output when they are well 

formulated. 
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 Detailed models based on first principles can model both normal and “faulty” 

operation; therefore, “faulty” operation can be easily distinguished from 

normal operation.  

 The transients in a dynamic system can only be modeled with detailed 

physical models. 

Disadvantages of FDD based on quantitative models include (Katipamula and 

Brambley, 2005): 

 They can be complex and computationally intensive. 

 The effort required to develop a model is significant. 

 These models generally require many inputs to describe the system, some for 

which values may not be readily available. 

 Extensive user input creates opportunities for poor judgment or input errors 

that can have significant impacts on results. 

 

2.3.1.2. Qualitative Model-based Methods 

 

Based on various forms of qualitative knowledge used in fault diagnosis, 

qualitative model-based approaches can be classified into digraphs, fault trees and 

qualitative physics methods (Venkatasubramanian, 2003b). 

Causal model approaches using digraphs: A Signed Directed Graph or Signed 

Digraph (SDG), as a qualitative model, effectively and graphically represents a 

process system. Cause-effect relations or models can be represented in the form of 

signed digraphs. A digraph is a graph with directed arcs between the nodes and SDG 

is a graph in which the directed arcs have a positive or negative sign attached to 

them. The directed arcs lead from the ‘cause’ nodes to the ‘effect’ nodes. SDGs 

provide a very efficient way of representing qualitative models graphically and have 

been the most widely used form of causal knowledge for process fault diagnosis 

(Venkatasubramanian et al., 2003b). Using signed digraphs (SDG) for fault diagnosis 

was first proposed and what is called a cause-effect graph (CE graph) was derived 
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from SDG in 1979 (Iri et al., 1979). SDG can be obtained from differential algebraic 

equations for the process (Umeda et al., 1980). The issue of conditional arcs in SDG 

is addressed and also extended the idea of SDG to include five-range patterns instead 

of the usual three-range pattern used in the standard SDG (Shiozaki et al., 1985).  

Partial system dynamics, statistical information about equipment failure, and 

digraphs to represent the failure propagation network for identifying fault location 

are used (Kokawa et al., 1983). Rule-based methods using SDG have been used for 

fault diagnosis (Kramer and Palowitch, 1987). An important work in the field of 

steady-state Qualitative Simulation (QSIM) using SDG has been presented in 

(Oyeleye and Kramer, 1988).  

In recent years, the problem of fault diagnosis using what is called Possible 

Cause and Effect Graph (PCEG) models have been approached (Wilcox et al., 1994a; 

Wilcox et al., 1994b). Digraph-based models for automated HAZOP analysis have 

been used (Vaidhyanathan et al., 1995). Use of SDGs for multiple fault detection is 

demonstrated (Vedam et al., 1997a). Improvement of fault resolution in SDG models 

through the use of fuzzy set theory are discussed (Han et al., 1994). A framework for 

process supervision using fuzzy logic-based fault diagnosis has been presented 

(Genovesi et al., 1999). How fuzzy digraphs can be used for qualitative and 

quantitative simulation of the temporal behavior of process systems has been 

presented (Li and Wang, 2001). 

Fault trees approaches: Fault trees are used in analyzing system reliability and 

safety. Fault tree analysis was originally developed at Bell Telephone Laboratories in 

1961 (Yang, 2004). Fault tree is a logic tree that propagates primary events or faults 

to the top level event or a hazard. The tree usually has layers of nodes. At each node 

different logic operations like AND and OR are performed for propagation. Fault-

trees have been used in a variety of risk assessment and reliability analysis studies 

(Kelly and Lees, 1986; Ulerich and Powers, 1988).  

Qualitative physics approaches: The detailed physical models are based on detailed 

knowledge of the physical relationships and characteristics of all components in a 

system. Using this detailed knowledge for mechanical systems, a set of detailed 



2. FAULT DETECTION AND DIAGNOSIS (FDD) Alkan ALKAYA 

19 

mathematical equations based on mass, momentum, and energy balances along with 

heat and mass transfer relations are developed and solved. Detailed models can 

simulate both normal and “faulty” operational states of the system (although 

modeling of faulty states is not required by all methods). Quantitative models have 

an advantage in modeling the transient behavior of the systems more precisely than 

any other modeling technique. 

The first approach is to derive qualitative equations from the differential 

equations termed as confluence equations (Yang, 2004). Considerable work has been 

done in this area of qualitative modeling of systems and representation of causal 

knowledge (Iwasaki, 1986). The other approach in qualitative physics is the 

derivation of qualitative behavior from the Ordinary Differential Equations (ODEs). 

These qualitative behaviors for different failures can be used as a knowledge source. 

Sacks examines piece-wise linear approximations of nonlinear differential equations 

through the use of a qualitative mathematical reasoned to deduce the qualitative 

properties of the system (Sacks, 1988). Kuipers predicts qualitative behavior by 

using Qualitative Differential Equations (QDEs) that are an abstraction of the ODEs 

that represent the state of the system (Kuipers, 1986). Bendapudi and Braun provide 

a detailed list of available dynamic models for vapor compression equipment. They 

also developed a dynamic centrifugal chiller model from first principles for FDD 

(Bendapudi et al., 2002). In terms of applications of qualitative models in fault 

diagnosis, Qualitative Simulation (QSIM) and Qualitative Process Theory (QPT) 

have been the popular approaches. Examples of research work in QSIM include in 

(Kay and Kuipers, 1993). Examples of using the QPT framework in process fault 

diagnosis include in (Falkenhainer and Forbus, 1991). 

 

Advantages and Disadvantages of Qualitative Models 

Advantages of qualitative models are (Katipamula and Brambley, 2005): 

 They are well suited for data-rich environments and noncritical processes. 

 These methods are simple to develop and apply.  
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 Their reasoning is transparent, and they provide the ability to reason even 

under uncertainty. 

 They possess the ability to provide explanations for the suggested diagnoses 

because the method relies on cause-effect relationships. 

 Some methods provide the ability to perform FDD without precise knowledge 

of the system and exact numerical values for inputs and parameters. 

Disadvantages of FDD based on qualitative models include (Katipamula and 

Brambley, 2005): 

 The methods are specific to a system or a process. 

 Although these methods are easy to develop, it is difficult to ensure that all 

rules are always applicable and to find a complete set of rules, especially 

when the system is complex. 

 As new rules are added to extend the existing rules or accommodate special 

circumstances, the simplicity is lost. 

 These models, to a large extent, depend on the expertise and knowledge of the 

developer. 

 

2.3.2. Data-Driven Based Fault Detection Methods 

 

2.3.2.1. Quantitative Data-Driven Methods 

 

Methods that extract quantitative information can be broadly classified as 

non-statistical or statistical methods. Neural networks are an important class of non-

statistical classifiers. Principal component analysis (PCA)/partial least squares (PLS) 

and statistical pattern classifiers form a major component of the statistical feature 

extraction methods (Venkatasubramanian et al., 2003c). 

Multivariate statistical approaches: In multivariate situations, the probability that a 

process is completely under normal operating control region is less than that in the 

univariate case (Montgomery, 1996). Similarly the probability that a multivariate 
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process is completely out-of-control is less than that of a univariate case. Using 

multivariate control charts the desired confidence level can be maintained by taking 

advantage of the cross correlation information between variables. Hence, the process 

can be analyzed for its stability without the added complication of maintaining many 

control charts at the same time. 

Classical multivariate statistical process control methods, for example latent 

variable methods such as Principal Component Analysis (PCA) and Partial Least 

Squares (PLS), have been used in process monitoring problems. These are based on 

transforming a set of highly correlated variables to a set of uncorrelated variables 

(Kresta et al., 1991; MacGregor and Kourti, 1995). The use of PCA assumes data are 

approximately normally distributed and time independent (Jollife, 1986). Generally, 

industrial processes are dynamic in nature, and exhibit highly auto-correlated process 

variables. Moreover, correlations between variables tend to be nonlinear. These 

characteristics can lead to an excess of false alarms or a significant loss of 

information when using linear PCA for process monitoring. 

To address these limitations, several modifications to basic PCA have been 

proposed. Nonlinear Principal Component Analysis (NLPCA) is used to capture 

nonlinear relationships among variables. Compared to linear PCA, NLPCA can 

explain more variance in smaller dimensions (Dong and McAvoy, 1996; Kramer, 

1991; Tan and Mavrovouniotis, 1995). Similarly, dynamic PCA has been proposed 

to eliminate the effect of autocorrelation in process data by augmenting the data 

matrix with time-lagged variables (Ku et al., 1995; Luo et al., 1999; Lin et al., 2000). 

Adaptive PCA updates the model parameters continuously by exponential smoothing 

so as to get the model adjusted to suit new operating conditions (Wold, 1994). 

Multiway and multiblock PCA are suitable for batch process operations (Nomikosi 

and MacGregor, 1994; MacGregor et al., 1994; Wold et al., 1996). Moreover, 

multiblock PCA allows for efficient computation of very large datasets. 

Conventional multivariate process monitoring methods detect fault conditions 

at a single scale since they represent the data in terms of basis functions at a fixed 

resolution or scale in time and frequency. An early development of a multiscale 
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framework for statistical process monitoring can be attributed to Bakshi (1998) who 

proposed use of wavelets to decompose data into several views or scales prior to the 

application of PCA. This has a two-fold effect, namely decorrelation across variables 

and elimination or reduction of autocorrelation individual variables. Wavelets are 

appropriate in this regard due to their time-frequency localization property. Several 

combinations of PCA with wavelets have been developed to monitor the process 

because of the ability of wavelets to compress multiscale features of the signal and 

approximately remove serial or auto correlations in time signals (Bakshi, 1998; 

Misra et al., 2002; Maulud et al., 2006; Rosen and Lennox, 2001). Multiscale 

Principal Component Analysis (MSPCA) approach adapts to the nature of the signal 

features and this approach has been extended to a nonlinear MSPCA by using neural 

networks to extract the latent nonlinear structure from the PCA transformed data 

(Fourie and Devaal, 2000; Shao et al., 1999; Zhinqiang and Qunxiong, 2005). 

Statistical classifier approaches: Fault diagnosis is essentially a classification 

problem and hence can be cast in a classical statistical pattern recognition 

framework. Fault diagnosis can be considered as a problem of combining, over time, 

the instantaneous estimates of the classifier using knowledge about the statistical 

properties of the failure modes of the system (Ocak, 2003; Rengaswamy et al., 2000). 

Neural network approaches: Considerable interest has been shown in the literature 

to the application of neural networks for fault diagnosis. In general, neural networks 

that have been used for fault diagnosis can be classified along two dimensions: (i) the 

architecture of the network such as sigmoidal, radial basis and so on; and (ii) the 

learning strategy such as supervised and unsupervised learning (Yang, 2004).  

The most popular supervised learning strategy in neural networks has been 

the back-propagation algorithm. There are a number of papers that address the 

problem of fault diagnosis using back-propagation neural networks. In chemical 

engineering, Watanabe et al. (1989), Ungar et al. (1990) and Hoskins et al. (1991) 

were among the first researchers to demonstrate the usefulness of neural networks for 

fault diagnosis. 
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Most of the work on improvement of performance of standard back-

propagation neural networks for fault diagnosis is based on the idea of explicit 

feature presentation to the neural networks by Fan et al. (1993), Tsai and Chang 

(1995), and Maki and Loparo (1997). Modifications to the selection of basis 

functions have also been suggested to the standard back-propagation network. 

Different network architectures have been used for the problem of fault diagnosis. 

For example, Bakshi and Stephanopoulos (1993) proposed Wave-net: a 

multiresolution hierarchical neural network. Self-organizing neural network 

structures such as the ART2 network (Carpenter and Grossberg, 1988) have also 

been extensively used in fault diagnosis. Whiteley and Davis (1994) demonstrate the 

use of the ART2 network for the interpretation of sensor data. Chen et al. (1999) and 

Wang et al. (1999) discuss the integration of wavelets with ART networks for the 

development of diagnostic systems. 

 

2.3.2.2. Qualitative Data-Driven Methods 

 

Two of the major methods that extract qualitative history information are 

expert systems and Qualitative Trend Analysis (QTA) (Venkatasubramanian, 2003c). 

Expert system approaches: Rule-based feature extraction has been widely used in 

expert systems for many applications. An expert system is generally a very 

specialized system that solves problems in a narrow domain of expertise. The main 

components in an expert system development include: knowledge acquisition, choice 

of knowledge representation, the coding of knowledge in a knowledge base, the 

development of inference procedures for diagnostic reasoning and the development 

of input – output interfaces. The main advantages in the development of expert 

systems for diagnostic problem-solving are ease of development, transparent 

reasoning, the ability to reason under uncertainty and the ability to provide 

explanations for the solutions provided (Venkatasubramanian et al., 2003c). 
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Initial attempts at the application of expert systems for fault diagnosis can be 

found in Henley (1984), Chester et al., (1984) and Niida (1985). Rich et al. (1989) 

discuss a diagnostic expert system for a whipped topping process. 

There are a number of other researchers who have proposed on application of 

expert systems for diagnostic problems. Basila et al. (1990) have developed a 

supervisory expert system that uses object-based knowledge representation to 

represent heuristic and model-based knowledge. Becraft and Lee (1993) have 

proposed an integrated framework comprising of a neural network and an expert 

system. Tarifa and Scenna (1997) have proposed a hybrid system that uses signed 

directed graphs (SDG) and fuzzy logic. Wo et al. (2000) have presented an expert 

fault diagnostic system that uses rules with certainty factors. Leung and Romagnoli 

(2000) have presented a probabilistic model-based expert system for fault diagnosis. 

Qualitative trend analysis approaches: Trend analysis and prediction are important 

components of process monitoring and supervisory control. Trend modeling can be 

used to explain the various important events that happen in a process, to diagnosis 

malfunctions and to predict future states (Venkatasubramanian et al., 2003c). Cheung 

and Stephanopoulos (1990) have built a formal framework for the representation of 

process trends. Janusz and Venkatasubramanian (1991) identify a comprehensive set 

of primitives by which any trend can be represented. Rengaswamy and 

Venkatasubramanian (1995) have shown how primitives can be extracted from raw 

noisy sensor data by treating the problem of primitive identification as a 

classification problem using neural networks. Vedam and Venkatasubramanian 

(1997b) proposed a wavelet theory based adaptive trend analysis framework and later 

proposed a dyadic B-Splines based trend analysis algorithm (Venkatasubramanian et 

al., 2003a). Recently, Rengaswamy et al. (2001) have discussed the utility of trend 

modeling in control loop performance assessment. 

Advantages and Disadvantages of Data Driven-Based Models 

The advantages of FDD methods based on process history are (Katipamula 

and Brambley, 2005): 

 



2. FAULT DETECTION AND DIAGNOSIS (FDD) Alkan ALKAYA 

25 

 These methods are well suited to problems for which theoretical models of 

behavior are poorly developed or inadequate to explain observed 

performance.  

 They are suited where training data are plentiful or inexpensive to create or 

collect. 

 Black-box models are easy to develop and do not require an understanding of 

the physics of the system being modeled. 

 Computational requirements vary, but they are generally manageable. 

 There is a wealth of documented information available on the underlying 

mathematical methods. 

Disadvantages of process history-based methods of FDD include (Katipamula 

and Brambley, 2005): 

 Gray-box models based on first principles require a thorough understanding 

of the system and expertise in statistics. 

 Most models cannot be used to extrapolate beyond the range of the training 

data. 

 A large amount of training data is needed, representing both normal and 

“faulty” operation.  

 The models are specific to the system for which they are trained and rarely 

can be used on other systems. 

 

2.4. Model-Based Fault Detection Method 

 

Model-based fault detection methods in dynamic systems have been received 

much attention over the last decades, both in research context and in the domain of 

application studies on real plants (Renganathan and Bhaskar, 2010). Model-based FD 

methods are based on comparing the behaviors of the actual plant and a mathematical 

model of the system (Hammouri et al., 2010). The method uses signal residuals, 

which indicates changes between the real process and the process model. A general 
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principle of the model-based fault detection is shown in Figure 2.4. In the figure, u(t) 

is system input variables, y(t) is system output, r(t) is the residual signal, which is 

used to compare the difference between real process and system model. The model-

based approach (analytical redundancy) is a widely accepted modern approach for 

fault detection and isolation (FDI). It is based on the idea that the measurements from 

dissimilar sensors are functionally related. Any violation of these relationships 

indicates the occurrence of faults. It also indicates the essential problem in model-

based fault detection and isolation (FDI) is to generate a good residual model 

describing the behavior of the monitored system.  

 

 

Figure 2.4. Scheme for the Model-Based Fault Detection. 

 

Residual generation can be performed in different ways: parity equations 

(Zhong et al., 2009), observer-based generation (Peng et al., 2010), and the methods 

based on parameter estimation (Fischer et al., 2007). Key references of model-based 

FDI can be found in Chen and Patton (1999); Gertler (1998); Patton and Chen 

(1997); Isermann and Ballé (1997); Frank (1996); Willsky (1976); Garcia and Frank 

(1997); Blanke et al. (2003).  
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Observer-based fault detection method is one of the most effective methods 

and has obtained much more attention (Depersis and Isidori, 2000; Odgaard et al., 

2008; Chen and Chowdhury, 2010; Fanglai and Feng, 2010). Over the years, 

different linear time-domain designed observers have been investigated. A state 

space observer which can be used for fault detection is the Kalman filter (Karami et 

al., 2010). A drawback of the Kalman filter is that the feedback gain matrix is 

determined in a way that considers the sensitivity with respect to disturbances and 

not faults. Therefore, Luenberger observer (Chen and Chowdhury, 2010) is 

commonly used in the residual generation part. The process model in an observer can 

be extended with integral state variables that represent functions of the faults which 

will then be estimated. 

 

2.4.1. Observer-Based Fault Detection Method 

 

The basic idea of an observer based FDI scheme is to reconstruct the outputs 

of the system from the measurements or subsets of the measurements with the help 

of an observer and using the estimation error as a residual for the detection and 

isolation of the faults. For a given linear state-space system:   

    

 
( ) ( ) ( )

( ) ( )             

x t Ax t Bu t

y t Cx t

 



       (2.1) 

 

where the input u(t) ∈ üR , the state x(t) ∈ ğR , the output y(t)  ∈ şR . R denotes real 

number vector. Assuming that A ∈ ğxğR , B ∈ ğxüR , C ∈ şxğR  are known plant 

matrices. ü, ğ, ş denotes number of inputs, number of states and number of outputs, 

respectively. 

One can design a state observer in the following form provided the system is 

completely observable:  
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    (2.2) 

 

where x̂ , ŷ and K are the estimated system state, the estimated system output and the 

observer gain respectively, K ∈ R , R denotes set of positive real numbers. The 

difference between the measured system output y(t) and the estimated system output 

ˆ( )y t can be used as the residual signal for the purpose of fault detection and isolation. 

Figure 2.5 shows the configuration of an observer-based residual generator, where 

f(t), d(t) and r(t) represent the fault, the disturbance and the residual signal 

respectively. Subtracting (2.2) from (2.1) gives:  
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   (2.3) 

 

Define the state estimation error x as: 

 

     ˆx t x t x t         (2.4) 

 

Then Equation (2.3) can be re-written as 

 

   ( )x t A KC x t         (2.5) 

 

 

It can be seen from (2.5) that the dynamic behavior of the error vector x is 

determined by the eigenvalues of matrix (A-KC). If the matrix (A-KC) is stable, the 

error vector will converge to zero for any initial error vector  0x . Hence the 

residual signal r(t):  

 

       ˆ ˆ( )r t y t y t Cx t Cx t          (2.6) 
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will be very close to zero under the normal operating condition. However, if there is 

a fault occurred in the sensor, which can be modeled as a change in the matrix C i.e. 

C = C+ΔC , the residual will become: 

 

     ( )r t Cx t Cx t        (2.7) 

 

where ΔC is the uncertainty caused by parameter variations, model uncertainties and 

external disturbances, and bounded, C   , denotes threshold value to detect 

fault.  

 
Figure 2.5. Use of Observer to Generate Residual. 

 

 

It is no longer close to zero, thus testing the residual, r(t), can indicate a fault. 

Actuator and system faults can be modeled similarly as the changes in the matrices A 

and B respectively. Analysis will also show that the residual would deviate from zero 

if a fault in the system or the actuator should occur. 

 

2.4.2. Robustness  

 

  Model-based FDD methods are based on mathematical models; however, a 

precise and accurate model of a real system might not be easy to obtain. There are 

some obvious reasons; e.g., unknown structure of disturbances, different noise 
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effects, and uncertain or time varying (due to aging) system parameters. FDD 

methods that are able to handle this kind of model uncertainty are referred to as 

robust. Model uncertainty can cause false and missed alarms; hence, it needs to be 

considered when implementing FDD systems. If it is not handled properly, it can 

have strong impact on FDD performance. There exist several approaches to handle 

the robustness issue. They are divided into two groups as active and passive 

robustness approaches. The active robustness approach deals with the model 

uncertainty in the residual generation phase. The aim is to avoid model uncertainty 

effects on the residuals. The passive robustness approaches are implemented in the 

residual evaluation phase, e.g., by using time varying thresholds, also known as 

adaptive thresholds. For further details about robust FDD, the research results of 

Chen and Patton (1999) and Frank and Ding (1997) can be seen. 

 

2.5. Conclusion 

 

The basic aim of this chapter is to give some definitions and terminologies 

used in the field of fault detection and diagnosis and to review various methods to 

fault detection from different perspectives. Towards that goal, we have classified the 

methods into two categories: (i) model-based methods; and (ii) data-driven-based 

methods. We have also compared the advantage and disadvantage of these methods. 

In this chapter, we interested with model-based methods and Lunberger observer-

based fault detection scheme is proposed. 
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3. DATA DRIVEN-BASED FDD: CONCEPT AND THEORY 

 

For large scale systems it is often difficult to use model-based methods 

because of the lack of accurate models (Alkaya and Eker, 2011). When large 

volumes of process data are available as in a modern state-of-the-art plant, data-

based technologies provide an alternative approach to process monitoring that 

partially circumvents difficulties associated with model-based methods. This is 

particularly appealing route as modern industrial processes are characterized by high 

instrumentation and process automation and, thus it is not uncommon to have large 

amounts of data collected every few seconds on such plants. In principle, data-based 

approaches exploit structure or regularities in data to derive mathematical or 

statistical models that describe expected process behavior under normal operating 

conditions. The derived models can then be used for monitoring, control and process 

optimization tasks. Data-driven process monitoring statistics based on multivariate 

methods and their applications in fault detection in industrial processes are briefly 

introduced in this section. 

 

3.1. Multivariate Statistical Process Control (MSPC) 

 

Performance monitoring and early detection of abnormal events is critical in 

achieving set product quality objectives as well as general continuous process 

improvement. Examples of such abnormal events include among other, drifts and 

shifts in the mean or the variance of one or more process variables. To this end, a 

range of statistical process monitoring techniques has been proposed as a means for 

achieving stated plant objectives. These included classical charting techniques such 

as Shewhart, Cumulative Sum (CUSUM), and Exponentially Weighted Moving 

Average (EWMA) control charts used in monitoring the performance of processes to 

detect changes in process performance. However, these charts are not suitable for 

multivariate processes where observed variables tend to be significantly correlated. 

To effectively handle these cases, multivariate extensions of these univariate 
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methods have been developed. These are based on the projection of measured 

variables onto latent structures. More specifically, methods based on the use of 

principal component analysis (PCA), partial least squares (PLS) and related variants 

have gained a lot of attention over the last couple of decades in the monitoring of 

multivariable processes (Kano et al., 2001; Kourti, 2005; Zvokelj et al., 2010;  

Zhiqiang et al., 2011). These groups of fault detection and diagnosis tools are 

generally referred to as multivariate statistical process control (MSPC) methods. 

 

3.1.1. Classical Statistical Process Control 

 

Classic univariate control charts analyze data at a fixed scale or resolution, 

which makes them detect changes at that single scale. More formally, the linear 

transformation of data in these charts has been done at fixed frequencies and extract 

features in the domain of time as illustrated in Figure 3.1 (Ganesan et al., 2004). 

Shewhart charts represent data at the sampling interval or at the finest scale which is 

effective for detecting large mean shifts. The Shewhart charts use only information 

about the process contained in the last observed point and ignore any information 

given by the entire sequence of points. This limitation of Shewhart charts can be 

overcome by the use of CUSUM, Moving Average (MA) and EWMA charts. On the 

one hand CUSUM charts represent data at the scale of all measurements or at the 

coarsest scale and directly incorporate all of the information in the sequence of 

sample values by plotting the cumulative sums of the deviations of the sample values 

from a target value. MA and EWMA charts, which fall in between these two 

extremes viz. Shewhart and CUSUM, are very effective in detecting small mean 

shifts. The MA chart monitors the process location over time based on the average of 

the current subgroups and one or more prior subgroups and hence it gives equal 

importance to past data within its moving window. On the other hand, in EWMA the 

average of the samples is computed in a way that gives less and less weight to data as 

they are further removed in time from the current measurement. 
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Figure 3.1. The Traditional Multivariate Control Charts. 

 

3.1.2. Overview of Principal Component Analysis (PCA) 

 

The data-based PCA method, initially proposed by Pearson (1901) and later 

developed by Hotelling (1947), is one of the popular Statistical Process Control 

(SPC) methods which relates to its conceptual simplicity. In a PCA method, a 

number of related variables are transformed to a smaller set of uncorrelated variables. 

PCA is a useful multivariate analysis technology, which can be used for data 

compression, reduction of the data dimension, feature extraction, and image 

compression. The method produces a lower dimensional representation in a way that 

preserves the correlation structure among the process variables, and is optimal in 

terms of capturing the variability in the data (Russell, 2000).  

Kourti (2005) provided a good explanation for PCA method. When using a 

PCA method, Principle Components (PC) can be extracted by linearly combining the 

original input variables.  A simple schematic interpretation of PCA is illustrated in 

Figure 3.2. Suppose that there are five variables in a process.  Notice those variables 

x1, x3 and x4 exhibit the same pattern; they are correlated with each other for this time 

period.  Therefore, two PCs can be used in this example.  The first PC is a weighted 

average of x1, x3 and x4, while the second PC is a weighted average of x2 and x5.  

Again, the main purpose of PCA method is to find factors that have much lower 

dimensions than the original data set but can still properly describe the major trends 

in the original data set. 
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Figure 3.2. A Simplified Representation of PCA. 

 

PCA is based on the assumption that process operates at a steady-state 

operating condition and each of the variables is uncorrelated in time. In practice, 

industrial processes exhibit dynamic behavior and, therefore, in addition to being 

cross correlated, variables exhibit some degree of autocorrelation arising from, for 

example, throughput changes, controller feedback and the presence of unmeasured 

disturbance. Moreover, the high sampling frequency relative to the dominant process 

time constant and process inertia may lead to incorrect decisions due to false alarms 

when using PCA. To address these and other drawbacks, several extensions of PCA 

have been developed to account for non-Gaussianity, autocorrelation and 

nonlinearity in observed data. These are introduced in the current sections (Shun, 

2009). 

 

3.1.2.1. Dynamic PCA (DPCA) 

 

Ku et al. (1995) showed that a linear time-series relationship can be 

incorporated into the conventional PCA analysis.  Dynamic PCA (DPCA) model can 

be extracted from the data arranged to represent an ARX model structure.  For a 

dynamic system, the current values of the variables depend on the past values.  The 

steady state PCA approach may be extended to model and monitor dynamic systems 

by augmenting the data matrix to include time-lagged variables:  
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  1 1 2 2( ) ( 1),  ...,  ( ) ( 1),...,X x t x t x t x t      (3.1) 

 

The augmented data matrix uses appending lagged time-series modeling to 

extract the time-dependent relations in the measurements. DPCA extends the 

capability of conventional static PCA to be used for dynamic multivariate system and 

was proven to be effective at small disturbance detection. 

 

3.1.2.2. Moving PCA (MPCA)  

 

Moving PCA (MPCA), proposed by Kano et al. (1999), is based on the idea 

that a change of operating condition can be detected by monitoring directions of PCs. 

In the following sections, principal component is abbreviated as PC.  

In order to detect a change of PCs, the reference PCs representing a normal 

operating condition should be defined, and the differences between the reference PCs 

and the PCs representing a current operating condition should be used as indexes for 

monitoring. The index Ai can be used for evaluating the change of PCs, 

 

0( ) 1 ( )T

i i iA t w t w        (3.2) 

 

where, ( )iw t denotes the ith PC calculated at time t,  and 0iw denotes the reference  

of ith PC.  Both iw  and 0iw are unit vectors. The index Ai is based on the inner 

product, i.e. the angle of PCs. When the ith PC representing a current operating 

condition is equivalent to its reference, Ai becomes 0. On the contrary, Ai becomes 1 

when  iw  is orthogonal to 0iw . 

 

3.1.2.3. Nonlinear PCA 

 

Conventional PCA has been found to perform well when applied to steady-

state linear processes without serious dynamics. For more complicated cases with 

particularly nonlinear characteristics, PCA performs poorly due to its assumption that 
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the process data are linear. A nonlinear PCA technique, called Kernel Principal 

Component Analysis (KPCA) has emerged in recent years as an effective approach 

to solve the problem of nonlinear data (Cho et al., 2005). The basic idea of KPCA is 

to map input vectors into a high-dimensional feature space via the appropriate kernel 

function, which helps to relate input space by some nonlinear mapping. Then PCA is 

performed in the projected feature space. 

Yoo and Kyoo (2006) proposed a new dynamic nonlinear monitoring method 

that combined KPCA and an exponentially weighted moving average (EWMA) for 

biological wastewater treatment processes. Biological wastewater treatment 

processes have several features similar to Air Handling Unit (AHU) operations. First, 

most process changes occur slowly and continuously. Second, the processes exhibit 

strong non-stationary and dynamic characteristics.  The kernel functions of KPCA 

can capture the nonlinearity of bioprocesses and EWMA can catch the dynamics of 

bioprocesses. The monitoring results on bioprocesses showed that this method was 

better at detecting small shifts than existing static, linear and nonlinear monitoring 

methods. Therefore, the results indicated that this method is an appropriate tool to 

supervise process stability and to analyze nonlinear bioprocesses, yielding a fast and 

robust monitoring system. 

 

3.1.2.4. Multi-Block PCA (MBPCA) 

 

When using multi-block PCA (MBPCA), a large data matrix is decomposed 

into smaller matrices of blocks to allow easier modeling and interpretation of a large 

data matrix. The PCA model is then developed for each block, as well as for multiple 

blocks together to capture the relationship between the sub-blocks. The blocks are 

defined based on physical knowledge about the system that being modeled, such as 

variables measured on distinct equipment or corresponding to different regimes of 

operation. The approach provides greater insight into the data than conventional 

PCA. 

Qin et al. (2001) explored the orthogonal properties of MBPCA and Partial 

Least Squares (PLS) algorithms. The use of MBPCA and PLS for monitoring and 
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diagnosis is derived in terms of regular PCA and PLS scores and residuals, which 

can be identified in the contribution plot. While the multi-block analysis algorithms 

are basically equivalent to regular PCA and PLS, blocking of process variables in a 

large-scale plant based on process knowledge helps to localize the root cause of the 

fault. New definitions of block and variable contributions to Q and T
2
 are proposed 

and successfully applied by Qin et al. (2001). 

 

3.1.2.5. Recursive PCA (RPCA) 

 

A major limitation of PCA is that PCA model, once built from the data, is 

time-invariant, while most real processes are time-varying. Frequent external 

condition changes can cause process fluctuations and result in variables that have (i) 

changes in the mean value (ii) changes in the variance (iii) changes in the correlation 

structure among variables. As most industrial processes experience slow and normal 

time-varying behaviors, recursive PCA (RPCA) method is expected to have a broad 

applicability. RPCA efficiently updates the model by recursively calculating the 

correlation matrix, determining the number of PCs, and confidence level for Q and 

T
2
, which are indices for fault detection. 

Li et al. (2000) presented a monitoring strategy that built a RPCA model with 

a moving time window. PCA model was updated at fixed time intervals to overcome 

the problem of changing operation conditions, which commonly demonstrated slow 

time varying behaviors. The updated elements of RPCA included sample-wise 

update, recursive determination of number of principal components, and confidence 

limits for Q and T
2
 in real time to facilitate adaptive monitoring. 

 

3.1.2.6. Multi-Scale PCA (MSPCA) 

 

Another way to handle changing process conditions is to use the wavelet 

transform method. The method can be used to decompose a signal into different 

scales of decreasing level of detail or resolution. Multi-scale PCA (MSPCA) 
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combines the ability of PCA to extract the cross-correlation relationship between the 

variables with the ability of wavelet transform method to extract the auto-correlation 

features in the measurements. MSPCA monitors process measurement at different 

time-scale by decomposing measurement data into separate frequency bands. This 

method increases the sensitivity of fault detection, which makes it possible to detect 

small but significant events in data displaying large variations. 

As an application of this approach to fault detection, MSPCA has been 

proposed by Bakshi (1998). Wavelet analysis partitions data set into frequency 

intervals (scales) and each scale is modeled locally by PCA method. MSPCA 

extracted relationships between the variables such as supply air temperature and 

humidity by PCA, and between the samples by wavelet analysis. It is similar to 

multi-block PCA in that both methods decompose the overall monitoring statistics. 

However, the multi-block methods block the information according to variables, 

whereas the multi-scale methods block the data with respect to the wavelet 

coefficients at different scales. 

 

3.2. PCA Based Fault Detection Method 

 

Modern industrial processes are large-scale interconnected systems. Thus, 

efficiency of any data-driven monitoring scheme depends upon its ability to 

compress a huge amount of process data and extract the meaningful information 

within. One of the most common multivariate statistical process control (MSPC) 

methods used for this purpose is principal component analysis. PCA has been used 

for various multivariate data analysis techniques such as process monitoring, quality 

control, sensor and process fault diagnosis (Wang et al., 2004; Xiao et al., 2006; 

Youming and Lili, 2009; Wang et al., 2010; Youming and Lili, 2010). In the present 

section, the general principle of using PCA for fault detection is presented. 
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3.2.1. Data Reduction and Information Extraction 

 

Principal component analysis is a data-based multivariate statistical technique 

that was developed primarily to explain the variance-covariance structure of a set of 

correlated variables through a few linear combinations of these variables. Usually, 

data collected from industrial processes contains redundancy due to multiple 

measurements of the same variable or due to constraints or linear relationships 

between variables. PCA separates this redundancy by decomposing the data into a 

few key independent components, which will describe the major trends in the 

processes, thereby reducing the number of variables to be monitored. 

Let X , nxm X R  represent a data matrix, n denotes number of 

measurements, m denotes number of physical variables, and n>m (He et al., 2006). 

The data matrix must be normalized to zero mean and unity variance with the scale 

parameter vectors x and є as the mean and variance vectors respectively. Using 

PCA, the data matrix X  can be decomposed as shown in Figure 3.3(a): 

 

ˆX X E          (3.3) 

 
ˆ ˆ ˆTX TP         (3.4) 

 
TE TP         (3.5) 

 

where, X is Principal Component Subspace (PCS), it represents the correct direction 

of the measured vectors. E represents residual subspace (RS), it is the direction of 

faulty measurements. E is noise or uncertain disturbance mostly, when the 

measurements are fault free. T̂ is score  matrix, nxaˆ  T R , ˆ ˆT PX . P̂ is loading 

matrix, nxaˆ  PR . “a” is principal components (PCs) number of the model. The 

columns of P̂  are eigenvectors of the correlation matrix associated with the “a” 

largest eigenvalues and the columns of P are the remaining m – a eigenvectors.  
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Figure 3.3. a) Reduced-Subspace Matrix, b) PCA Modeling Process. 

 

As shown in Figure 3.3(b) (Youming and Lili, 2009), the PCA modeling process is 

composed of the following steps: 

1. The normalization of the original variables. 

It is necessary to normalize the data before using the PCA. In our 

application, the data is normalized to zero mean, unit variance to eliminate 

the undesired weight difference in the variation of different variables with 

different magnitudes. The correlation PCA approach treats every variable 

equally and gives each variable an equal weight in the total variance. 

2. Calculation of the covariance matrix  (Xiao et al., 2009):  
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1

1

TX X
n

 


       (3.6) 

 

3. Singular Value Decomposition (SVD) is performed as (Bin and Yang, 2008): 

 

 TV V           (3.7) 

 

where is a diagonal matrix that contains the eigenvalues  i  
of the 

covariance matrix   sorted in decreasing order 1 2( 0)m      in the 

diagonal locations. Columns of the matrix V are the eigenvectors of . 

4. Determine the optimal number “a” of PCs. 

To select the proper number of principal components “a”, most used 

approaches in literature are given of the end of this section.  

The Cumulative Percentage Variance (CPV) approach (Wold et al., 1987) 

which is commonly used in FD problems is used in present case such that the 

cumulative variance percent (=cumulative sum of the variances captured by 

each PC) is considered to select the PC for which, say, over 90% of the 

cumulative variance is captured. The variances captured by the PC’s are 

calculated using the eigenvalues computed from (3.7) that is related to the 

data matrix X: 

 

  1 100
( )

a

iiCPV a
trace








      (3.8) 

 

5. Choose loading matrix P̂ according to the PCs number “a”. 

6. The projection matrix  and   are calculated using the loading matrix P̂ as:  

 

                        
ˆ ˆTPP      ( )TPP I                     (3.9) 
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The original m dimension data space is substituted by the “a” PCS and “m-a” RS, 

and then the correlations of variables are removed. After the PCA model has been 

built, when new measurements are collected, the PCA model can be used for the 

fault detection. 

 

3.2.2. Statistics Associated with PCA Models 

 

Statistic PCA models, that are built using historical data under normal 

operating condition, can be used to monitor correlations among sensor measurements 

in a dimension-reduced subspace. Statistics are used as fault indexes, which will 

increase significantly to abnormal level if sensor faults occur. There are two 

monitoring statistics that are the Hotelling’s T
2
-statistic and Q-statistic or Square 

Prediction Error (SPE). 

 

3.2.2.1. T
2
-Statistic 

 

Normal operations can be characterized by employing T
2
-statistic method 

proposed by Hotelling (1947):  

 

 2 1ˆ ˆT T

aT XX P P         (3.10) 

 

where a is a squared matrix formed by the first “a” rows and columns of  .  

The process is considered normal for a given confidence level  (100 1 %)  if: 

 

 
 

2

2 1
( , )

n a
T F a n a

n n a
 


 


              (3.11) 

 

where ( , )F a n a   is the critical value of the Fisher-Snedecor distribution with n and 

n – a degrees of freedom and   the level of significance.   takes the values between 
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95% and 99% as recommended by Antory (2007). The T
2
-statistic with (3.11) 

defines the normal process behavior, and an observation vector outside this region 

indicates that a fault has occurred. 

 

3.2.2.2. Q-Statistic  

 

 The portion of the measurement space corresponding to the lowest m – α 

singular values can be monitored by using the Q-statistic method, developed by 

Jackson and Mudholkar (1979) as: 

 

TQ r r       ( )Tr I PP x        (3.12) 

 

The threshold for the Q-statistic method can be calculated using its approximate 

distribution: 

 

0

1

0 2 2 0 0
1 2

1 1

2 ( 1)
1

hh c h h
Q 



   
    

   

    (3.13) 

 

with  

 1 3
0 2

1 2

2
             1

3

m
i

i j

j a

h
 

 
    


      (3.14) 

 

where c is the value of the normal distribution and α is the level of significance. 

When an unusual event produces a change in the covariance matrix structure of the 

model, it will result in a high value of Q. 
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3.2.3. Geometrical Interpretation of the Monitoring Statistics 

 

The geometrical interpretation of the Hotelling’s T
2
- and the Q-statistics is 

illustrated in Figure 3.4 for a two-dimensional (2D) plane formed by the first and 

second PCs. Point A shows the orthogonal deviation of a new sample perpendicular 

to the ellipse plane model, while point B shows the horizontal deviation of a new 

sample from the center of the ellipse plane model. The deviation represents a serious 

effect of the abnormal situation to the process. The further away this deviation is 

from the ellipse plane model the more serious the effect of the fault which has 

occurred (Antory, 2007). 

 

 
Figure 3.4. Geometric Interpretation of the Monitoring Statistics.  

 

3.2.4. Proposed Threshold for T
2
-Statistics 

 

Classical PCA methods for FD use a data collected from a steady-state 

process to monitor T
2
- and Q-statistics with fixed threshold which are calculated in 

(3.11) and (3.13). For the systems where the transient values of the processes must 

also be taken into account, the usage of fixed threshold in a PCA method causes the 

false alarms which significantly compromise the reliability of the monitoring 

systems. 
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To overcome this problem a new threshold is proposed in section 3.2.4.2 as a 

first contribution of this research. The proposed threshold is generated as a 

combination of fixed and adaptive threshold (combined threshold, Tcomb).  

However, missing alarm signal appeared due to the high variance occurred as 

a result  of high noise components in magnitude, since the complete raw signal 

(unfiltered) is used in the research. 

In section 3.2.4.3, to overcome the issues pointed in section 3.2.4.2, the 

variance sensitive adaptive algorithm is proposed as a second contribution. Now in 

the present section the issue caused to the missing data is cleared using a proposed 

algorithm being in a straightforward fashion. 

In literature the algorithms developed have been used only for regulation 

systems not for the servo systems or variable set point conditions. The proposed 

algorithm is valid for both the regulation and servo systems, for variable set point 

conditions. 

 

3.2.4.1. Adaptive Threshold (Tadp) 

 

Considering the variation of the T
2
 signal defined in (3.10) with the data 

matrix X which consist of all measured data, the mean and variance of the T
2
 signal 

can be expressed according to the stochastic theory (Bhattacharya and Waymire, 

1990): 

 

   2

1

1
, ( )

n

i

i

X t T t
n 

          (3.15) 

 

    
22 2

1

1
, ( ) ,

1

n

i

i

X t T t X t
n 

  

      (3.16) 

 

where  , 2  and n are the mean, variance and number of data sample respectively. 

From the statistical theory (Wang, 2003) the confidence limits of the mean that 

represent a confidence of (1 ) is 
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   1P z z            (3.17) 

 

where   is the confidence level, and z is the coefficient related to the confidence 

level. z is calculated for zero mean ( 0)  and standard deviation is equal to unity 

(σ 1) . Therefore (3.17) can be rewritten as:  

 

   1P z z             (3.18) 

 

The coefficient z is obtained from the cumulative distribution function  z : 

 

    1
2

z P z


            (3.19) 

 

1(1 )
2

z  
         (3.20) 

 

The confidence (1 )  is typically selected to be 95–99% in practice. From 

(3.17), the adaptive threshold of the mean for the T
2 

signal can be calculated as 

(Wang, 2003): 

 

2 2( , ) ( , )adpT T t z T t          (3.21) 

 

3.2.4.2. Combination of Fixed and Adaptive Threshold (Tcomb) 

 

Fixed threshold ( )T in (3.11) provides the chosen confidence limit. However 

it causes the false alarms in the transient state of the system. The adaptive threshold 

( )adpT  eliminates the false alarm but eliminates confidence limit. The fixed ( )T and 

adaptive ( )adpT
 
thresholds are combined as combT  to overcome the false alarms and 

to provide reasonable confidence limit as: 
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adp

comb

adp adp

T if T T
T

T if T T

 



 
  

 
  (3.22) 

 

where, Tcomb eliminates the false alarms arising from the transient state. But the high 

variance which occurs during the variations of the states in transient conditions and 

measurements noise results in very high Tcomb. This causes to produce the missing 

fault signal components. 

 

3.2.4.3. Variance Sensitive Adaptive Threshold (Tvsa) 

 

To overcome the outlined drawbacks the threshold should be sensitive to the 

size of the variance. High variance is obtained if 2 2( , ) ( , )T t T t  . Instead, if the 

variance 2( , )T t is taken to be equal to the mean 2( , )T t the high variance will be 

reduced to a reasonable level:  

 

      2 2 2, , , 1adpT T t z T t T t z          (3.23) 

 

New threshold Tvsa called “variance sensitive adaptive threshold” can be given as: 

 

  

2 2

2

                                                      

( , ) ( , )                   

, 1                     

adp

vsa adp adp

adp adp

T if T T

T T T t z T t if T T and

T T t z if T T and

 





 


        


      

 (3.24) 

 

where the parameter T  in (3.24) provides the confidence limit, the relation 

2 2( , ) ( , )T t z T t    overcomes the false alarm in the transient state and the last 

relation   2 , 1T t z   reduces high variance effect and eliminates missing fault 

signal component. The overall fault detection issues described in the present section 

are illustrated in Figure 3.5.  
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Figure 3.5. a) Fixed ThresholdT , b) Combination of Fixed and Adaptive Threshold 

combT , c) Variance Sensitive Adaptive Threshold vsaT . 

 

 

3.2.5. Fault Diagnosis Using Contribution Plots  

 

When a fault has been detected using the T
2
- and Q-statistics, it is important 

to identify the cause of the out-of-control status. This can be achieved using 

contribution plots. In a PCA model two types of contribution plots are needed to 

identify the fault since two types of multivariate control charts are used, i.e., by Q-

statistic for residuals and Hotelling’s T
2
-statistic for systematic variations within the 

model structure (Teppola et al., 1998). PCA contributions plots are defined as the 
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contribution of each process variable to the individual score of the T
2
- or Q-statistic. 

Note that the role of variable contribution plots in fault identification is to show 

which of the variables are related to the fault rather than to reveal the actual size of it. 

The variables with high contribution to the contribution plots are simply the 

signature of such faults (Kourti, 2005). 

 

3.2.5.1. Contribution Plots: Hotelling’s T
2
-Statistic  

 

For the T
2
 statistic value of an observation, the variable contributions to an 

out-of-limits value are obtained as a bar plot of the mean of the absolute value of 

1T P   which shows how each variable is involved in the calculation of T
2
 value 

at that point. T is the matrix containing the score values of all the variables at that 

scale and P is the corresponding loading matrix. The matrix   is a diagonal matrix 

of the eigenvalues. The inverse of this matrix normalizes the score values of different 

PCs. In order to decide whether the individual variable contribution to the T
2
 value is 

significant or not, one can either compute control limits for the contribution plots or 

one can compare the size of the variable’s contribution under faulty conditions with 

the size of the same variable’s contribution under normal operating conditions. In 

other words variables with the largest contribution to the T
2
 value often indicate the 

source of the fault. The control limit for individual variable contribution will be the 

length of T
2
 interval that is the square root of the T

2
-limit (Jackson, 1991; Johnson 

and Wichern, 1992; Teppola et al., 1998). 

 

3.2.5.2. Contribution Plots: Q-Statistic  

 

When an out-of-control situation is detected using the Q-statistic, bar graphs 

of the ratio of residual variance of each variable in the testing and training set show 

the variations of each process variable in the residual space. This is computed by 

generating the residual matrix Enew and Eold of the testing and training data set by the 

following equation: 
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 T

new newE X I PP         (3.25) 

 

where Xnew is the new data matrix (testing  data) and P is the loading matrix 

containing the retained PCs in the PCA model. 

 

Similarly, 

 

 T

old oldE X I PP         (3.26) 

 

where Xold is the old data matrix (training  set). Then finding the ratio of residual 

variance, that is    new oldvar E var E , can assist in identifying the variables 

responsible for the variations in the residual space. ‘var’ denotes variance of the 

signal. Variables with large variation in the residual space will show a large value of 

the residual variance and will be also be out of the control limits of the Q-statistic. 

 

3.2.6. Selecting the Proper Number of Principal Components (PCs) 

 

A key issue in developing a PCA model is to choose an adequate number of 

principal components to represent the process in an “optimal” way (Valle et al., 

1999). If fewer principal components are selected than required, a poor model will be 

obtained which has an incomplete representation of the process. On the contrary, if 

more principal components than necessary are selected, the model will be over-

parameterized and will include a significant amount of noise. Based on the available 

literature, a simple but reliable CPV (Cumulative Percent Variance) method has been 

chosen for our application. The other approaches are given in the current sections.   
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3.2.6.1. Prediction Sum of Squares (PRESS) 

 

The PRESS (PREdiction Sum of Squares) procedure was introduced by 

Wold (1994). As summarized by Fourie (2000), the procedure is as follows: 

If m is the number of variables and n is the number of samples, then the data 

can be represented in n × m matrix X. These data are then randomly divided time-

wise in g groups. The first group is removed from the sample and the PCA is 

performed on the remaining samples. The first principal component and then the first 

two (continuing until all m components are used) are then used to predict values of 

the deleted sample. For each predicted observation of the deleted sample, obtain the 

SPE (Q) statistic. 

After this has been completed, the removed sample should be replaced and 

another group should be removed. The calculation of the Q-statistic is then calculated 

as before again. 

After this has been repeated for all g groups, then Q-statistic should then be 

summed for each a type of model (e.g. for the two component model). The PRESS 

statistic is then formed as follows: 

 

1 n

a ai

i i

PRESS SPE
nm 

        (3.27) 

 

Now, to check if the addition of the a
th

 principal component is warranted, 

 is calculated as follows: 

 

 1 .

.

 


a a R

M a

PRESS PRESS D

D PRESS
      (3.28) 

 

with 

   
1

2                       

1 2

M

a

R

i

D n p a

D p n n p i


  



    



     (3.29) 

 



3. DATA DRIVEN-BASED FDD: CONCEPT AND THEORY Alkan ALKAYA 

52 

If 1  , then the a
th

 principal component should then be retained and testing of the 

(a + 1)
th

 component should be tested in the same way. If 1  that component need 

not be included. It is possible that after the first occurrence of 1   that later values 

of a will produce occurrences of 1  . This may be due to outliers (Fourie, 2000). 

This technique is overly complex as compared to the other techniques. It does 

have the advantage of being quantitative, making it suited for computer calculation. 

 

3.2.6.2. The Broken Stick Method 

 

This method makes use of the amount of variance explained by each 

component (Martinez and Martinez, 2004). If a line is randomly divided into p 

(corresponding to the maximum number of components or original variables) 

segments, then the expected length of the a
th

 longest piece is: 

 

1 1p

a

i a

g
p i

          (3.30) 

 

If the proportion of variance explained by the a
th

 component is greater than ga , then 

the amount of variance that the component explains is greater than expected by pure 

chance. It would then be useful to keep this component. 

 

3.2.6.3. The Size of Variance Technique 

 

Using the correlation technique, principal components with variance greater 

than 1 (la ≥ 1) would be retained (Martinez and Martinez, 2004). For the covariance 

technique, the component would be kept if its variance was greater than 70% of the 

average of all the variances, i.e. 
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0.7

   

1.0

a

a

l l

or

l l

 






        (3.31) 

 

Occasionally, a cut of value of 100% rather than 70% is used. This method may be 

preferred due to its simplicity and robustness (Lee et al., 2004). The justification is 

simply that the principal components contributing less than the average variance are 

probably insignificant. 

 

3.2.6.4. The Scree Plot Method 

 

The scree plot is a graphical method to gauge the amount of variance 

contributed by each component. It is a bar plot of la against a (the index of the 

component). The cumulative variance is also plotted as a line. To use the plot, the 

point where the line or the slope of a line between the blocks represents the value of 

la levels off. An example is shown in Figure 3.6. In this example, between 2 and 4 

principal components would be selected. A variant of this plot is the log-eigenvalue 

plot. This plot is used when the first few eigenvalues are much larger than the rest 

(Martine z & Martinez, 2004). 

Other methods include the Akaike Information Criteria (AIC) mentioned in 

Lee et al. (2004). 
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Figure 3.6. An Example of a Scree Plot. 

 

 

3.3. Wavelet Based Fault Detection Method 

 

Fault detection and diagnosis (FDD) is useful for ensuring the safe running of 

machines. Signal analysis is one of the most important methods used for FDD, whose 

aim is to find a simple and effective transform to the original signals. Therefore, the 

important information contained in the signals can be shown; and then, the dominant 

features of signals can be extracted for fault diagnostics. Hitherto, many signal 

analysis methods have been used for fault diagnostics, among which the Fourier 

Transform (FT) is one of the most widely used and well-established methods. 

Unfortunately, the FT-based methods are not suitable for non-stationary signal 

analysis and are not able to reveal the inherent information of non-stationary signals. 

However, various kinds of factors, such as the change of the environment and the 

faults from the machine itself, often make the output signals of the running machine 

contain non-stationary components. Usually, these non-stationary components 
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contain abundant information about machine faults; therefore, it is important to 

analyses the non-stationary signals (Pan and Sas, 1996).  

To resolve this deficiency, in 1946 the physicist Gabor (1964) motivated by 

quantum mechanics, modified the Fourier transform to analyze only a small section 

of the signal at a time. Gabor's adaptation, called the Short-Time Fourier Transform 

(STFT), maps a signal into a two-dimensional function of time and frequency (Figure 

3.7). It provides some information about both when and at what frequencies a signal 

event occurs, but its precision is limited by the size of the time window used. Its 

other weakness is that once one chooses a particular window size, which remains the 

same for all frequencies. The time-frequency window of any STFT is rigid; in many 

applications we need a more flexible approach where we can vary the window size to 

examine an event more accurately either in time or frequency. 

 

 

Figure 3.7. Short Time Fourier Transform 

 

However, STFT uses a fixed tiling scheme, i.e., it maintains a constant aspect 

ratio (the width of the time window to the width of the frequency band) throughout 

the analysis (Figure 3.8). As a result, one must choose multiple window widths to 

analyze different data features localized in the time and frequency domains. Hence, 

the STFT is badly adapted to signals where patterns with different frequencies 

appear. It also fails to efficiently resolve short time phenomena associated with high 

frequencies (Li, 2002). In recent years, time-frequency methods, such as wavelet-

based Multi Resolution Analysis (MRA) have gained popularity in the analysis of 

both stationary and non-stationary signals. These methods provide excellent time-

frequency localized information, which is achieved by varying the aspect ratio as 

shown in Figure 3.9 Hence, wavelet-based multiscale methods analyze time and 
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frequency localized features simultaneously with a high resolution, and also is 

adaptable to transient signals.  

Other advantages of the wavelet-based methods include the following:  

(i)       The ability to de-noise signals;  

(ii)        At each scale, the wavelet coefficients are de-correlated even if the input 

data is auto-correlated;  

(iii) The wavelet coefficients are normally distributed irrespective of the input 

data distribution; 

(iv)       The wavelet coefficients are stationary even if the input data is non-

stationary. 

 

 

Figure 3.8. STFT with Fixed Aspect Ratio. 
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Figure 3.9. Wavelet Transform with Variable Aspect Ratio (Daubechies Functions). 

 

3.3.1. History of Wavelet and Application Area 

 

The wavelet was first mentioned by Alfred Haar in 1909 in his research. In 

the 1930’s, Paul Levy found the scale-varying Haar basis function superior to Fourier 

basis functions. The transformation method of decomposing a signal into wavelet 

coefficients and reconstructing the original signal again is derived in 1981 by Jean 

Morlet and Alex Grossman. In 1986, Stephane Mallat and Yves Meyer developed a 

multiresolution analysis using wavelets. They mentioned the scaling function of 

wavelets for the first time; it allowed researchers and mathematicians to construct 

their own family of wavelets using the derived criteria. Around 1998, Ingrid 

Daubechies used the theory of multiresolution wavelet analysis to construct her own 

family of wavelets.  

Transient nature of machine signals and search for a particular time-

frequency behavior for diagnostic purposes render wavelets as highly suitable for the 

analysis of such signals. Some of the reasons for the use of wavelets in machine 

diagnosis applications are given (Tafreshi, 2005): 

 Wavelets as Time-Frequency Analysis Tools. Wavelets are mainly time-

frequency analysis tools. They are highly suitable candidates for machine 
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data analysis as information about a given machine operation lie both in time 

and frequency behavior of the signal.  

 Wavelets and Localized Signal Analysis. As stated earlier, machine data 

utilized for diagnosis are highly transient where information about a given 

machine condition reside in local behavior of the signal; i.e., changes 

occurring in part or the entire segment of the signal. Wavelets are highly 

suitable to capture localized changes and behavior.  

 Wavelet Coefficients as Feature Variables. Signal expansion by wavelets 

often leads to a few wavelet coefficients of large magnitude and large number 

of coefficients of small magnitude. This leads to signal approximation with 

limited number of large amplitude coefficients used as feature variables. 

Considerable reduction of dimensionality is achieved in this manner.  

 Wavelets as Unconditional Bases. Signal information lies in coefficient 

values obtained from wavelet signal decomposition. Wavelets are 

unconditional bases (Burrus et al., 1998) which imply a very robust basis in 

which the coefficients drop off fast independent of the sign of the 

coefficients. Therefore, in orthogonal signal decomposition, absolute values 

of the coefficients carry the necessary information about the signal. This 

allows using absolute values of wavelet coefficients for feature extraction.  

 Noise Reduction using Wavelets. Wavelets are used for noise reduction in 

which wavelet coefficients of small amplitude (below a given threshold) are 

set to zero. Often such coefficients belong to noise content of the signal at the 

highest frequency band. De-noising is different from the commonly used high 

frequency filtering, as it can be carried-out at all frequencies. On the other 

hand, we utilize de-noising scheme for reduction of machine background 

noise corresponding to overall acceleration observed in machine data. Often it 

is composed of white noise. Careful selection of threshold level in de-noising 

can successfully reduce machine background noise 
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3.3.2. Wavelet Theory 

 

Wavelets are classes of wave-like functions that are often irregular, non-

symmetric, and with no analytical/mathematical expression. They have finite number 

of oscillations and an effective length of finite duration. Wavelets are used as basis 

functions for signal decomposition and signal processing. They allow function 

expansion in orthogonal, non-orthogonal or redundant structures. Wavelets are 

considered as unconditional bases with properties that allow efficient information 

extraction and coding (Chui, 1992). 

Wavelets are a family of basis functions which are localized in the time and 

frequency domains, and are obtained from a single prototype wavelet, called mother 

wavelet or basic function ( )t , by scaling (frequency) and translation (shifting in 

Time).  The wavelet family can be defined as 

 

,

1 t
( t ) 


 



 
  

 
      (3.32) 

 

where   is the so-called scaling parameter,  is the time localization parameter, 

 R  and 0 , R  denotes set of real numbers (Qiu et al., 2006). In the discrete 

case, the scale and translation parameters are discretized as 
j2  and 2 jk . 

(3.32) can be rewritten as: 

 

j / 2 j

, j ,k( t ) ( t ) 2 ( 2 t k )            (3.33) 

 

where j and k denote the scale and translation parameters, respectively. The 

translation parameter determines the location of the wavelet in the time domain, 

while the scale parameter determines the location of the wavelet in the frequency 

domain.  

 The wavelet transform of a finite energy signal ( )g t  with the analyzing 

wavelet ( )t  is the convolution of ( )g t  with a scaled and conjugated wavelet: 
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*( , ) ( )
1 t

W g t dt


  






 
  

 
      (3.34) 

 

where 
*( )t stands for the complex conjugation of ( )t .  

The wavelet transform ( , )W    can be considered as functions of translation 

 with each scale . Equation (3.34) indicates that the wavelet analysis is a time-

frequency analysis, or a time-scaled analysis. Different from the Short Time Fourier 

Transform (SFFT), the wavelet transform can be used for multi-scale analysis of a 

signal through dilation and translation so it can extract time-frequency features of a 

signal effectively (Peng et al., 2004). 

In general, wavelet analysis uses the wavelet functions which can be 

stretched and translated with a flexible resolution in both frequency and time.  The 

flexible windows are adaptive to the entire time-frequency domain, which narrows 

while focusing on high frequency signals and widen while searching the low-

frequency background.  In this way, wavelet analysis allows the wavelets to be 

scaled to match most of the high and low frequency signal so as to achieve the 

optimal resolution with the least number of base functions. 

Several wavelet basis function types are available in the literature (Genesan et 

al., 2004). Some of these are the Haar’s, Daubechies’, coiflets, symlets, bi-orthogonal 

wavelets, etc. The Haar basis was known even before the wavelets were developed. 

Although Haar’s has a compact support, it does not have good time frequency 

localization. Moreover, it is unsuitable for representing classes of smoother functions 

due to its discontinuities. Some of the desirable properties of the basic functions are 

good time-frequency localizations, various degrees of smoothness (number of 

continuous derivatives), and large number of vanishing moments (ensures maximum 

number of zeros of the polynomial at the highest discrete frequency). 

 The most widely used wavelet is the Daubechies’ basis function which is 

shown by DbN, where N is the order; the greater the N, the more oscillating and 

smooth the wavelet. Two examples of Daubechies family, Db4 and Db8, are shown 

in Figure 3.10 The Haar’s filter is best suited to represent step signals or piecewise 
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constant signals, whereas the Daubechies’ filter is better for smoother signals (Shao 

et al., 1999). Therefore, Daubechies’ wavelet function is used in our applications. 

                   

 
Figure 3.10. Two Examples of Daubechies Family of Wavelets. 

 

3.3.2.1. Multi Resolution Analysis (MRA) 

 

Any process is characterized by its parameters. For an in-control process 

operating under chance causes of variation will typically consist of a single feature, 

i.e., data collected from the process will have a stable probability distribution. 

However, most real life processes do not behave in an ideal way. For example, the 

measurements representing a process may be contaminated with noise and/or various 

other features due to tool failure, faults, sensor failure and machine parts degradation. 

This implies that the state of a process in general would not consist of a single 

feature but rather would have multiple features (Ganesan et al., 2004). 

Thus, to identify a change in a process parameter, it is necessary to analyze 

the features of the data relevant to the change in both the time and frequency 

domains. For example, a step change in a signal (i.e., a change in the process mean) 

is more localized in time but not in frequency, whereas a change in the variance is 

more localized in the frequency domain than in the time domain. It is clear that 

different process features are better represented at different domains and hence 

should be examined accordingly. Thus, a useful approach for analyzing a process 

should be a time-frequency approach, which would describe the time localization as 
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well as the frequency localization of data. One such approach is wavelet-based MRA 

(Ganesan et al., 2004). 

Mallat (1989) combined the idea of an image pyramid structure and Wavelet 

analysis to develop a technique in signal processing, which is called the multi-

resolution analysis (MRA). Previous research on the application of MRA in fault 

detection focused on the analysis of the abrupt change in signal (Mallat & Hwang, 

1992; Nobuyuki et al., 1996; Paul, 1994). Using MRA, the original signals are 

decomposed into multi-scale components. Since the abrupt changes in signal produce 

significant peaks in some scales, a fault in signal can therefore easily be detected. 

As shown in Figure 3.11, the wavelet transform can be used to decompose 

multivariate signals s into approximations a1 and details d1 coefficients at the first 

level. The difference between the first approximation a1 and the original signal S is 

the detail d1 (this is the high frequency components that are filtered out). Application 

of the same transform on the approximations a1 causes them to be decomposed 

further into approximations a2 and details d2 coefficients at the second level.  The 

decomposition process can continue to a level L as long as the length of 

approximation coefficients in al is more than the length of coefficients in the wavelet 

filter.  The wavelet transforms work like a filter.  After passing a signal through a 

wavelet transform filter, wavelet coefficients are generated.  The wavelet transform 

contains a low pass filter (only obtaining low frequencies), which is denoted by L0, 

and a high pass filter (only obtaining high frequencies), which is denoted by H0.  At 

each level, the original signal, s, passes through two both low and high pass filters  

and emerges as two signals, which is detail coefficients dn, and approximation 

coefficients an. In Figure 3.11 “↓2” means the number of coefficients is halved 

through the filters. 
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Figure 3.11. Three Level Wavelet Decomposition Tree. 

 

3.3.2.2. Wavelet De-noising  

 

Industrial data is also synonymous with process measurement ‘noise’. Noise 

associated with the process measurements is known to impact upon the robustness of 

the process model. It is therefore desirable to extract the ‘true’ signal from the noise 

corrupted data prior to carrying out any detailed statistical analysis (Shao et al., 

1999). The traditional approach to filtering is to remove the high frequency 

components above a certain level since they are associated with noise. Small wavelet 

coefficients at low scales (high frequency area) are usually expected to be mainly due 

to noise components.  

The discrete wavelet transform (DWT) is found to yield a fast computation of 

the wavelet transform (Xinhua et al., 2008). It is computed by a successive low pass 

and high pass filtering of the discrete digital signal. 

Specifically, applying the DWT ( )Wf t   to the data ( )f t , one obtains 

e   , where ,  ,  e  are the collections of all coefficients, parameters and 

errors transformed from data ( )iy t to the true data ( )if t , respectively. Because 

smaller coefficients are usually contributed from data noises, thresholding out these 

coefficients has an effect of ‘removing data noises’ (Kunpeng et al., 2009). Donoho 

(1994), and Donoho and Johnstone (1995) developed several wavelet-based 

thresholding techniques to find a smooth estimate ˆ( )f  of f  from the ‘noisy’ data y. 
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In wavelet thresholding, after setting some coefficients to zeros, the reconstructed 

(denoised) signal is obtained by inverse transformation. Figure 3.12 shows hard and 

soft thresholding of signal ( )y f t . The hard thresholding method consists in 

setting all the wavelet coefficients below a given threshold value equal to zero, while 

in soft thresholding the wavelet coefficients are reduced by a quantity equal to the 

threshold value (Pasti et al., 1999). The resulting coefficients are then used for 

selective reconstruction of an estimate of the inverse of DWT: 

 

1ˆ ˆ( )f t W           (3.35) 

 

The general de-noising procedure involves three steps: 

1. Signal decomposition. Choose a wavelet basis function. Compute the wavelet 

decomposition of the signal. (i.e. calculating all the wavelet coefficients such 

as approximation and detail coefficients.). 

2. Threshold detail coefficients. Select threshold (soft or hard) and apply it to 

the detail coefficients. 

3. Signal reconstruction. Compute wavelet reconstruction using the original 

approximation coefficients and recover the de-noised signal.  

f

t
λ 

f

t
λ 

(a) (b)

    
( )

0     
hard

f f
y t

f

  
 

 
  

sgn( )( )   
( )

0                         
soft

f f f
y t

f

    
 

 

 

Figure 3.12. Thresholding Schemes: a) Hard Thresholding, b) Soft Thresholding. 
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where sgn denotes the usual sign function. The choice of   is obviously crucial: 

small/large thresholds will produce estimates that tend to overfit/underfit the data. 

 

3.4. Conclusion 

 

Classical PCA methods for FD use a data collected from a steady-state 

process to monitor T
2
-statistic with fixed threshold. For the systems where the 

transient values of the processes must also be taken into account, the usage of the 

fixed threshold in a PCA method causes the false alarms which significantly 

compromise the reliability of the monitoring systems. A combined algorithm 

(Combination of Fixed and Adaptive Threshold (Tcomb)) is proposed to overcome the 

problems raised from the fixed threshold and provide required confidence limit. 

However, the data collected from industrial process often contain measurement noise 

that causes to produce the missing fault signal components when the combined 

threshold method is used.  

Two methods are proposed to overcome the outline drawbacks. The first one 

is variance sensitive adaptive threshold methods that sensitive to the high variance 

which occurs due to noise. The second one is wavelet based combined PCA method 

that removes the noise before combined PCA analysis.  

The proposed methods overcome the false alarms which occur in the transient 

states according to changing process conditions and the missing data problem 

according to noisy signals. 

 

 

 

 

 

 

 

 

 



3. DATA DRIVEN-BASED FDD: CONCEPT AND THEORY Alkan ALKAYA 

66 

 

 



4. EXPERIMENTAL SET-UP   Alkan ALKAYA 

67 

4. EXPERIMENTAL SET-UP 

 

  In the following section, experimental tests are presented in order to verify 

the fault detection methods studied in Section 3. Experimental tests are performed on 

an electromechanical system and process control system. A data acquisition card 

(DAQ-National Instruments, NI, Model: PCI-6229, 250 kHz in speed, 16 bit) is used 

to communicate between the plant and the computer. Operating range of the card is 

10V for input data and control outputs. A computer (Pentium IV, 2 GHz in speed, 1 

GB RAM) is used to practice the methods which are implemented in Simulink of 

MATLAB software (Eva, 1996). 

 

4.1. Description of Electromechanical System 

 

 Diagram of the first experimental set-up illustrated in Figure 4.1 is used in the 

experiments. Output shaft speed is measured from an optical sensor (as rev/sec) and 

a tachogenerator (as volts) connected to the motor shaft. The slotted opto-sensor 

consists of a gallium-arsenide infra-red L.E.D and a silicon phototransistor mounted 

in a special plastic case which is transparent to light of the wavelength. A series of 

pulses is generated when the slotted disk that is mounted on the motor shaft, is 

rotated. When the shaft of the dc motor is turned, a voltage is induced at the 

tachogenerator terminals and it is directly proportional to the shaft speed. The 

specifications of the DC motor are given in Table 4.1. The motor also drives a shaft 

that carries disks that operate various transducers, and a tachogenerator. Speed of the 

dc motor corresponding to the different input armature voltages is measured in Table 

4.2 to obtain the tachogenerator characteristics. It is determined that the 

tachogenerator has linear characteristics and gain of the tachogenerator is calculated 

as 2.02 volt/rad/sec. The 1Ω resistor is fitted in series with the armature to allow 

monitoring of the armature current by measurement of the voltage dropped across it. 

Since the resistor is 1Ω, the voltage measured across it in mV will directly 

correspond to currents in mA.  
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Table 4.1. DC Motor Specification 
Armature Resistance R = 6.2 ohm 
No Load Current I = 120 mA (V=12 Volt) 
Stall Current I = 1,93 A (V=12Volt) 

Starting Torque T = 7 Ncm/A 

Torque Constant K = 3.5 Ncm/A 

Time Constant t = 19.6 ms 

Efficiency Ef = 70% - 82% 

Shaft Speed at No Load 2400 rpm (max) 

 

 

Table 4.2. Electromechanical System Responses to Different Input Signals. 
Applied input 

(volt) 
(Va) 

Speed 
(rev/sec) 

Speed 
(rad/sec) 

Tacho output 
(volt) 

2.0 7 0.7330 1.46 

3.0 11 1.1519 2.30 

4.0 15 1.5708 3.14 

5.0 19 1.9896 3.98 

6.0 24 2.5132 5.04 

7.0 28 2.9320 5.87 

8.0 32 3.3510 6.70 

9.0 37 3.8746 7.75 

10.0 41 4.2935 8.60 
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Figure 4.1. a) A Scene from the Laboratory, b) General Diagram of the Laboratory 

Equipment, and c) A Scene from an Electromechanical Plant. 

 

The electrical and mechanical equations for the electromechanical plant, shown in 

Figure 4.2, consisting of a dc motor connected to a load via a long shaft can be given 

as:  

 

       a a a a a m m

d
v t L i t R i t K t

dt
        (4.1) 
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
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where av is the motor armature voltage, aR and aL  are the armature coil resistance 

and inductance respectively, ai is the armature current, mK is the torque coefficient, 

mT is the generated motor torque, m and L  are the rotational speeds of the motor, 

mJ and LJ are the moments of inertia, mR and LR are the coefficients of viscous-

friction, dT is the external load disturbance, fT is the nonlinear friction, and sT  is the 

transmitted shaft torque, t is the independent time variable. Model of the nonlinear 

friction fT  can be obtained by considering an asymmetrical characteristic as (Jang 

and Jeon, 2000): 

 

         2 5

0 1 3 41   2fT e sgn e sgn
   

           (4.6) 

 

where i denote friction constants and positive, 0i  , 0, ,5i   , 0 3   , 1 4   , 

2 5    and the functions sgn1 and sgn2 are defined as:  
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1           0
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0           0
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 

   
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  (4.7) 
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The electromechanical plant to implement theoretical results, a dc motor connected 

to a load via a shaft, is shown in Figure 4.2. 

 

 
Figure 4.2. Diagram of the Electromechanical Plant. 

 

Block diagram of the electromechanical plant is illustrated in Figure 4.3 

(Eker, 2010). 
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Figure 4.3. Block Diagram of the Electromechanical Plant. 

 

 

4.2. Description of Process Control System  

 

The second experimental setup used in this research is a process control set 

(Figure 4.4) whose components are listed in Table 4.3. It features a pilot scale 

process that consists of a 5 liters pressurized vessel equipped with the temperature, 

continuous level, and pressure sensors. The vessel liquid temperature may be 
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controlled using an electric resistance. The feedline is equipped with a variable speed 

pump, a flow meter, and a proportional control valve.  The outlet line has a needle 

valve which is adjusted as a disturbances and kept untouched for the whole set of 

experiments. The leaving liquid from the vessel is then collected into a sump tank, 

from where the feedline begins. Also, the pilot has a set of manual valves. The level 

and flow sensor characteristics are presented in Figure 4.5 and Figure 4.6, 

respectively. 

Besides the process itself, the trainer includes a control module which 

contains the interface circuits for the sensors and the actuators, and on-off, 

proportional, integral and derivative control circuits.  

 

 
Figure 4.4. Process Control Experimental Setup. 
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Table 4.3. Parts of the Process Control Experimental Setup Shown in Fig. 4 

A Sump Tank (20 liters approx..) 

B Pressurized Vessel (5 liters approx..) 

C Control Module (On/Off, P, PI, PID) 

D Pump (6 liters/minute, 12 V, 1.5 A.) 

E Motor Driven Valve (4 manual valve) 

F Water Heating Resistance (48V, 200W) 

G Level Sensor (LVDT) 

H Flow Sensor (8000 pulses/liter) 

I Temperature Sensor (Pt. 100) 

K Pressure Sensor (strain gauge) 

L Needle Valve (manual) 
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Figure 4.5. Level Sensor Characteristics. 
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Figure 4.6. Flow Sensor Characteristics. 

 

 

4.3. Data Acquisition (DAQ) Card 

 

The same data acquisition card (DAQ-National Instruments (NI), Model: PCI-

6229, 250 kHz in speed, 16 bit) is used to communicate between the plant and the 

computer. Figure 4.8 shows a typical DAQ system, which includes sensors, 

transducers, signal conditioning devices, cables that connect the various devices to 

the accessories, programming software, and PC. The features of the DAQ card used 

in the experimental applications are given in table 4.4. The data acquisition card used 

in experiments is illustrated in Figure 4.7. 

 

Figure 4.7. Components of a Typical DAQ System. 
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Table 4.4. Specifications of NI PCI-6229 DAQ Card 

ANALOG INPUT  

Operating System/Target Real-Time, Linux, Mac OS, Windows 
Measurements Type Digital, frequency, voltage 
Channels 32, 16 
Single-Ended Channels 32 
Differential Channels 16 
Resolution 16 bits 
Sample Rate 250 kHz 
Maximum Voltage 10 V 
Maximum Voltage Range -10 V, 10 V 
Maximum Voltage Range Accuracy 3100 µV 
Maximum Voltage Range Sensitivity 97.6 µV 
Minimum Voltage Range -200 mV, 200 mV 
Minimum Voltage Range Accuracy 112 µV 
Minimum Voltage Range Sensitivity 5.2 µV 

ANALOG OUTPUT  

Channels  4 
Resolution 16 bits 
Maximum Voltage 10 V 
Maximum Voltage Range -10 V, 10 V 
Maximum Voltage Range Accuracy 3230 µV 
Minimum Voltage Range -10 V, 10 V 
Minimum Voltage Range Accuracy 3230 µV 
Update Rate 833 kHz 
Current Drive Single 5 mA 

PHYSICAL SPECIFICATIONS  

Length 15.5 cm 
Width 9.7 cm 
I/O Connector 68-pin VHDCI female 

TRIGGERING/SYNCHRONIZATION  

Triggering Digital 
Synchronization Yes 

 

 
Figure 4.8. Data Acquisition Card (NI PCI-6229).  
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4.4. Conclusion  

 

In this chapter, the plants and equipment that will be used in experimental 

tests are described in detail. These are Digiac 1750 process control set, DeLorenzo 

CL 2314 process control set, Data acquisition card (NI, model: PCI-6229) and 

computer. Mathematical model of the electromechanical plant and properties of the 

process control systems and specifications of DAQ card are presented. This 

equipment is located in Control Systems Laboratory at Electrical and Electronics 

Engineering Department, Çukurova University, Adana, Turkey. 
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5. EXPERIMENTS AND RESULTS 

 

5.1. Model-Based FD Applications 

 

 The validity of the observer based fault detection method was tested through 

an experimental system as shown in previous section Figure 4.1. For this propose, a 

series of experiments were carried out by using a DIGIAC 1750 process control set. 

All the experiments are performed with 6 V input voltage and sampling time Ts = 5 

ms. Measured signal and calculated residuals are employed without filters to show 

the robustness of the designed observer model. 

DC motor model is required for observer based fault detection methods. DC 

motor model is built in the Matlab/Simulink
© 

environment. A functional diagram of 

the overall observer-based fault detection method is demonstrated in Figure 5.1 After 

the model has been built, the residuals are generated by feeding input data into the 

full order estimator, monitoring the corresponding estimated outputs from the model 

and comparing the model outputs with the actual measured values. The errors are 

considered as the residuals. Thresholds for detection and diagnosis are set by 

considering the maximum values reached by the residuals over a range of tests. Once 

the residual crosses over a certain threshold, an alarm will be triggered, indicate a 

fault. 

The fault types that have been considered in this work are the following: 

• Drift or additive-type sensor fault: This is a very common fault in analog sensors. 

Due to internal temperature changes or calibration problems, the sensor output has an 

added constant term (abrupt and intermittent). 

• Multiplicative-type sensor fault: In this fault type, a multiplicative factor is 

applied to the sensor nominal value (incipient). 

• Sensor Failure: This is a catastrophic fault, at a given time the sensor fails and 

gives a constant zero output after the failure. The fault can be due to electrical or 

communication problems (disconnecting the speed sensor). 
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Figure 5.1. Simulink Model of the Observer Based Fault Detection Method. 

 

5.1.1. Fault Free Case 

 

Measured and estimated speed output of the DC motor is shown in Figure 

5.2(a) and the calculated residual is illustrated in Figure 5.2(b) when there is no fault 

in the system.  
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Figure 5.2. Fault Free Case  a) Measured and Estimated Outputs, b) Residual. 

 

Figure 5.2(b) shows the magnitude of the residual need not be exactly zero 

due to the presence of noise in the instruments and also due to errors in the observer 

design parameters. Hence, to avoid false alarms, a threshold of upper magnitude -

0.06 and the lower magnitude -0.15 was selected for residual.  

 

5.1.2. Abrupt Fault  

 

Fault was modeled as a stepwise function and applied to the sensor fault input 

as shown in Figure 5.1. Abrupt fault was applied to the measured sensor output at 3 

sec. Response of the measured and estimated output is illustrated in Figure 5.3(a) and 

fault indicator residual in Figure 5.3(b).  
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Figure 5.3. Abrupt Fault a) Measured and Estimated Outputs, b) Residual. 

 

 

In this case, it is observed that the magnitude of residual shown in Figure 

5.3(b) increases above the threshold value signaling the fault of the speed sensor. The 

time scale of Figure 5.3 is expanded around the region of occurrence of the fault for 

clarity and it is shown in Figure 5.4.  
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Figure 5.4. Abrupt Fault Residual. 

 

5.1.3. Incipient Fault  

 

Fault was modeled as a ramp function and applied to the sensor fault input as 

shown in Figure 5.1. Incipient fault was applied to the measured sensor output at 3 

sec. Response of the measured and estimated output is shown in Figure 5.5(a) and 

fault indicator residual in Figure 5.5(b). 
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Figure 5.5. Incipient Fault a) Measured and Estimated Outputs, b) Residual. 

 

 

In this case, it is observed that the magnitude of residual shown in Figure 

5.5(b) incipiently increases at 3.5 sec. above the threshold value signaling the fault of 

the speed sensor. Hence, it is assumed that better performance would be achieved 

with calculating the accurate model parameters. 

 

5.1.4. Intermittent Fault 

 

Intermittent fault is generated as combination of impulses in different 

amplitudes and applied to the sensor fault input as shown in Figure 5.1. The fault is 

applied to the measured sensor output at 3, 5, and 7 sec with amplitude 1, 1.5 and 2 

respectively in each time during 0.5 sec. Responses of the measured and estimated 

outputs are shown in Figure 5.6(a) and fault indicator residual in Figure 5.6(b). 
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Figure 5.6. Intermittent Fault a) Measured and Estimated Outputs, b) Residual. 

 

 

It is observed that the magnitude of residual shown in Figure 5.6(b) increases 

above the threshold value at applied fault time and size. The time scale of Figure 5.6 

is expanded around the region of occurrence of the fault for clarity and it is 

illustrated in Figure 5.7.  
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Figure 5.7. Intermittent Fault Residual. 

 

 

5.1.5. Sensor Failure 

 

In the first scenario, a fault is initially injected by disconnecting the speed 

sensor at 3 sec under the steady state condition. The sensor is reconnected after 5 

seconds. In the second scenario, disconnecting and reconnecting operation is injected 

to the system under the transient condition. These two scenarios are implemented as 

on-line. Response of the measured and estimated outputs is shown in Figure 5.8(a) 

and Fault indicator residual in Figure 5.8(b) for the first scenario. The second 

scenario is illustrated in Figure 5.9. 

 

 



5. EXPERIMENTS AND RESULTS  Alkan ALKAYA 

85 

 
 

Figure 5.8. Disconnection Fault Scenario 1 a) Measured and Estimated Outputs, b) 

Residual. 
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Figure 5.9. Disconnection Fault Scenario 2 a) Measured and Estimated Outputs, b) 

Residual. 

 

 

The magnitude of residual shown in Figure 5.8(b) and 5.9(b) decreases under 

the threshold value at applied fault time. The time scale of Figure 5.8 and Figure 5.9 

are expanded around the region of occurrence of the fault for clarity and these are 

given in Figure 5.10 and Figure 5.11, respectively. From Figure 5.10 and 5.11 it can 

be observed that the generated residual signals are sensitive to the faults under 

consideration. 
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Figure 5.10. Disconnection Fault Scenario 1 Residual. 

 

 
Figure 5.11. Disconnection Fault Scenario 2 Residual. 
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5.2. Data-Driven Based FD Applications 

 

5.2.1. Variance Sensitive Adaptive Threshold Based PCA Method 

 

  In order to demonstrate the efficacy of the proposed PCA method, some 

experimental tests are performed. The experiments are carried out in open–loop and 

closed–loop conditions to test both the steady-state and transient operating conditions 

for the actuator and sensor faults under the constant load. The results of experimental 

tests using the fixed threshold-based Q-statistic ( Q ), T
2
-statistic (T ), combination 

of fixed and adaptive threshold-based T
2
-statistic ( combT ) and proposed variance 

sensitive adaptive threshold-based ( vsaT ) methods are presented for PCA monitoring. 

The alarm signals are computed for each method. 

  A functional diagram of the overall PCA fault detection method is 

demonstrated in Figure 5.12.  Two measurements are chosen for calculating the PCA 

detection algorithm: the motor shaft speed and the motor armature current Using the 

Cumulative Percent Variance (CPV) approach, one principal component (a = 1) is 

found adequate to capture major correlations (%98) in the process variable. Q-

statistic and T
2
-statistic are computed in order to monitor behavior of the process. 

Then, the fixed thresholdT and Q are calculated for %95 confidence limit. The 

combination of fixed and adaptive threshold combT  and the proposed variance 

sensitive adaptive threshold vsaT are calculated. For the 97% confidence level 

(i.e. 0.03  ) (100(1-0.03) %=97%), and the coefficient z is calculated as 2.17. 
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Figure 5.12. Simulink Model of the PCA Fault Detection Method. 

 

5.2.1.1. Open-Loop Experiments 

 

 The open-loop diagram for the experiments is shown in Figure 5.13. Three 

fault experiments in the open-loop condition are carried out as actuator faults, sensor 

fault and transient tests. 

 

 

Figure 5.13. Block Diagram of the Open Loop System. 

 

Experiment 1: Actuator Fault 

 Experimental application for the actuator fault is performed that 6 V of the 

input voltage (corresponds to 1700 rpm) is applied to the open loop dc motor system. 

The measured output speed and the armature current of the motor are shown in 

Figure 5.14 and Figure 5.15, respectively.  
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Figure 5.14. Fault-Free Measured Speed. 

 

 
Figure 5.15. Fault-Free Measured Current. 

 

 A signal shown in Figure 5.16 is applied to the system as an actuator fault 

during the plant is running. After the actuator fault is applied, the measured speed 

and current signals are illustrated in Figure 5.17 and Figure 5.18, respectively.  
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Figure 5.16. Applied Fault Signal. 

 

 

 
Figure 5.17. Measured Speed. 
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Figure 5.18. Measured Current. 

 

 The results are plotted including alarm signals in Figure 5.19 in which the left 

column plots show PCA method with their threshold values and the right column 

plots show alarm signals produced.   

 Q-statistic and T
2
-statistic methods based on the fixed thresholds illustrated in 

Figure 5.19(a) and Figure 5.19(b) produce false alarm signals during the transient 

state of the fault signal applied. The missing fault signal components appear in the 

combination of fixed and adaptive threshold-based T
2
-statistic method as shown in 

Figure 5.19(c). The alarm signal produced from the proposed variance sensitive 

adaptive threshold method ( )vsaT  is illustrated in Figure 5.19(d) such that both the 

false alarm caused during the transient state and the missing data are eliminated.  
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Figure 5.19. PCA Monitoring Charts with Alarm Signal a)Q , b) T , c) combT , and 

d) vsaT . 

 

Experiment 2: Sensor Fault  

 When the system is under the steady-state operation condition a fault is 

injected by disconnecting and reconnecting the speed sensor for duration of 1.6 

seconds at 3 sec. After the applied fault, the measured speed is shown in Figure 5.20. 

Applied sensor fault does not efffect the input armatur current.  
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Figure 5.20. Measured Speed. 

 

 The results are plotted in Figure 5.21. The false alarm signal is produced in 

the Q-statistic and T
2
-statistic methods as shown in Figure 5.21(a) and Figure 

5.21(b), respectively. Interrupted fault signal (missing fault signal component) is 

produced in the combination of fixed and adaptive threshold-based T
2
-statistic 

method in Figure 5.21(c). Proper fault signal without missing component is produced 

and the false alarm is eliminated in the proposed method as illustrated in Figure 

5.21(d). 
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Figure 5.21. PCA Monitoring Charts with Alarm Signal a)Q , b) T , c) combT , and 

d) vsaT . 

 

Experiment 3: Transient Test (No Fault) 

 A square wave input armature voltage is applied to test the transient condition 

such that the motor is permitted to run between 420 rpm – 1440 rpm. When 2 volts 

of the armature input voltage is applied to the plant the output speed is measured to 

be 420 rpm. The input armature voltage is increased from 2 volts to 6 volts, and the 

output speed is measured to be 5.18 volts from the tachometer as shown in Figure 

5.22 such that 5.18 volts of the output corresponds to 1440 rpm of speed. The 

measured speed and armature current of the motor are plotted in Figure 5.23 and 

Figure 5.24, respectively. 
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 False alarm signals are produced in the Q-statistic and T
2
-statistic methods as 

shown in Figure 5.25(a) and Figure 5.25(b). No alarm signal is produced in the 

combination of fixed and adaptive threshold-based T
2
-statistic method and proposed 

variance sensitive adaptive method. Although no fault is applied to the system, the 

transient states are evaluated as a fault in the usual Q-statistic and T
2
-statistic 

methods. This confirms the fact that usual Q-statistic and T
2
-statistic fault detection 

methods are not applicable to the systems with variable set-points. On the other hand, 

the proposal method prevents the false alarm as shown in Figure 5.25(c) and Figure 

5.25(d).  

 

 
Figure 5.22. Applied Input Voltage. 

 

 
Figure 5.23. Measured Speed. 
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Figure 5.24. Measured Current. 

 

 
Figure 5.25. PCA Monitoring Charts with Alarm Signal a)Q , b) T , c) combT , and 

d) vsaT . 
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5.2.1.2. Closed-Loop Experiments 

 

 Closed-loop experimental tests are performed using a Proportional and 

Integral (PI) control structure illustrated in Figure 5.26 to test the system for the 

actuator and sensor faults.  

 

 
Figure 5.26. Experimental Closed-Loop Diagram. 

 

Experiment 4: Actuator Fault  

 The experimental test is performed that 4 V of the set-point voltage 

(corresponding to 1130 rpm) is applied to the closed loop system. Actuator fault is 

applied to the system while it is running in the steady-state operation such that the 

same fault signal performed in experiment 1, Figure 5.16, is applied to test response 

of the closed-loop system. The measured speed and current signals are illustrated in 

Figure 5.27 and Figure 5.28, respectively.  
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Figure 5.27. Measured Speed. 

 

 
Figure 5.28. Measured Current. 

 

 Fault alarm signals are indicated in all methods as shown in Figure 5.29 

accounted without any fault alarm since the system operates in the steady-state 

condition. However a missing fault signal is observed with the combination of fixed 

and adaptive threshold based T
2
-statistic method that is illustrated in Figure 5.29(c). 
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Figure 5.29. PCA Monitoring Charts with Alarm Signal a)Q , b) T , c) combT , and 

d) vsaT . 

 

Experiment 5: Sensor Fault 

 In the current experiment, the fault is applied to the speed sensor. When the 

system is under the steady-state operation condition the fault is injected by 

disconnecting and reconnecting the speed sensor for duration of 0.5 seconds at 3.5 

sec after the start-up. After the applied sensor fault, the measured speed is shown in 

Figure 5.30 and the measured current is illustrated in Figure 5.31.  
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Figure 5.30. Measured Speed. 

 

 
Figure 5.31. Measured Current. 

 

 The results are plotted in Figure 5.32. The alarm signals are observed in all 

methods without any fault alarm signal since the system operates in the steady-state 

condition. However a missing fault signal is observed with the combination of fixed 

and adaptive threshold-based T
2
-statistic method. 
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Figure 5.32. PCA Monitoring Charts with Alarm Signal a)Q , b) T , c) combT , and 

d) vsaT . 

 

Experiment 6: Transient Test (Sensor Fault) 

 A variable set-point signal shown in Figure 5.22 is applied to the closed loop 

system. The measured speed and the armature current of the motor are shown in 

Figure 5.33 and Figure 5.34, respectively.  
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Figure 5.33. Measured Speed. 

 

 
Figure 5.34. Measured Current. 

 

 While the system operates under the servo (tracking) condition as shown in 

Figure 5.33, a fault is injected by disconnecting and reconnecting the speed sensor 

for duration of 0.7 seconds at 1.75 sec. After the sensor fault is applied, the measured 

output speed and the measured current are plotted in Figure 5.35 and in Figure 5.36.  
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Figure 5.35. Measured Speed After the Sensor Fault. 

 

 
Figure 5.36. Measured Current After the Sensor Fault. 

 

False alarms are produced in the Q-statistic (Figure 5.37(a)) and T
2
-statistic 

(Figure 5.37(b)) method. False alarm is not indicated in the combination of fixed and 

adaptive threshold-based T
2
-statistic method but the fault signal appears with the 

missing component. False alarm is not present in the proposed variance sensitive 

adaptive threshold-based method and the produced fault signal does not include any 

missing component. 
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Figure 5.37. PCA Monitoring Charts with Alarm Signal a)Q , b) T , c) combT , and 

d) vsaT . 

 

Experiment 7: Actuator and Sensor Faults 

 Experimental application in which the actuator and sensor faults occur 

simultaneous is performed. While the plant runs in open-loop conditions with the 

applied of 6 V the input armature voltage, the output speed is 1440 rpm 

corresponding to 5.18 volts of the measured voltage from the tachometer.  After 1.6 

seconds of starting, as an actuator fault the input armature voltage cable is 

disconnected manually, and the sensor cable is also disconnected manually at 1.8 

seconds. The sensor cable is re-connected at 2.0 seconds manually and the actuator 

cable is re-connected at 2.35 seconds. The measured output and the armature current 

are illustrated in Figure 5.38 and Figure 5.39, respectively. 
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Figure 5.38. Measured Output Speed. 

 

 
Figure 5.39. Measured Armature Current. 

 

  The results are plotted with their alarm signals in Figure 5.40. Q-statistic and 

T
2
-statistic methods based on the fixed thresholds illustrated in Figure 5.40(a) and 

Figure 5.40(b) produce false alarm signals during the transient state of the fault 

signal applied. The missing fault signal components appear in the combination of 

fixed and adaptive threshold-based T
2
-statistic method as shown in Figure 5.40(c). 

The alarm signal produced from the proposed variance sensitive adaptive threshold 

method  vsaT is illustrated in Figure 5.40(d) such that both the false alarm caused 

during the transient state and the missing data are eliminated.  
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Figure 5.40. PCA Monitoring Charts for Simultaneous Actuator and Sensor Faults 

with Alarm Signal a) Q , b)T , c) combT , and d) vsaT . 

 

The overall experimental results based on the test performed in the open-loop 

and closed-loop operating conditions are summarized in Table 5.1 for a complete 

comparison. The fixed threshold-based Q-statistic and T
2
-statistic methods produce 

false alarms during the variable input in the open-loop or variable set-point signals.  

 Fault signal with the missing components is obtained with the combination of 

fixed and adaptive threshold-based T
2
-statistic method. The false alarm and missing 

alarm signal problems are eliminated in the proposed variance sensitive adaptive 

threshold-based T
2
-statistic method. 
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Table 5.1. Comparison Results Between the Standard and Proposed Thresholds. 
 

Thresholds for PCA Monitoring 
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5.2.2. Wavelet Based Combined PCA Method 

 

  In order to validate the feasibility and reliability of the proposed combined 

PCA method using wavelet, open loop and closed-loop experimental tests are 

performed on an electromechanical system (PI controller) and process control system 

(PID controller).  

The results of the experimental tests obtained from fixed threshold-based T
2
-

statistic  T , combination of fixed and adaptive threshold-based T
2
-statistic  combT , 

and combination of fixed and adaptive threshold-based T
2
-statistic  combT  with 

wavelet based de-noised signal are presented for PCA monitoring. The alarm signals 

produced for each method are computed. The sampling period is taken to be 5 ms for 

all experimental tests. 

  The measured noisy data are de-noised by using discrete wavelet transform. 

The fourth order of Daubechies wavelet (Db4) having four decomposition levels 

(level 4) and soft thresholding is applied to minimize the negative influence of the 

noise. After the wavelet de-noising, the combined PCA method is performed to 

detect the faults in the system. The flow chart of the process of the proposed method 

is demonstrated in Figure 5.41. 

 

 
Figure 5.41. Flow Chart of the Proposed Method. 
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5.2.2.1. Experiments on Electromechanical System 

 

5.2.2.1. (a) Open-Loop Tests 

 

Experiment 1: Actuator Fault 

 Experimental application for the actuator fault is performed that 6 V of the 

input voltage (corresponds to 1700 rpm) is applied to the armature of the open-loop 

dc motor systems. Original noisy and de-noised signals of the measured output speed 

and the armature current of the motor are shown in Figure 5.42 and Figure 5.43, 

respectively.  

 

 
Figure 5.42. Fault-Free Measured Speed a) Noisy, b) De-noised by Wavelet. 

 

 



5. EXPERIMENTS AND RESULTS  Alkan ALKAYA 

111 

 
Figure 5.43. Fault-Free Measured Current a) Noisy, b) De-noised by Wavelet. 

 

 

The signal shown in Figure 5.44 is applied to the system as an actuator fault 

during the plant is running. After the actuator fault is applied, the measured speed 

and current signals are illustrated in Figure 5.45 and Figure 5.46, respectively.  

 
Figure 5.44. Applied Fault Signal. 
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Figure 5.45. Measured Speed a) Noisy, b) De-noised by Wavelet. 

 

 
Figure 5.46. Measured Current a) Noisy, b) De-noised by Wavelet. 

 

 

 The results are plotted including the alarm signals in Figure 5.47 in which the 

left column plots show PCA method with their threshold values based on the 

noisy/de-noised signal and the right column plots show alarm signals produced.   
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 T
2
-statistic methods based on the fixed thresholds illustrated in Figure 5.47 

(a) produces false alarm signal during the transient state of the fault signal applied. 

The missing fault signal components appear in the combination of fixed and adaptive 

threshold-based T
2
-statistic method as shown in Figure 5.47(b). The alarm signal 

produced from the proposed method the combination of fixed and adaptive 

threshold-based T
2
 with de-noised by wavelet, is illustrated in Figure 5.47(c) such 

that both the false alarm caused during the transient state and the missing data are 

eliminated.  

 

 
Figure 5.47. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet. 

 

Experiment 2: Sensor Fault  

 When the system is under the steady-state operation condition a fault is 

injected by disconnecting and reconnecting the speed sensor for duration of 0.25 

seconds at 1.1 sec. After the applied fault, noisy and de-noised measured speeds are 
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shown in Figure 5.48. Applied sensor fault does not affect the input armatur current. 

Since the system runs in open-loop conditions. 

 

 
Figure 5.48. Measured Speed a) Noisy, b) De-noised by Wavelet. 

 

The results are plotted including the alarm signals in Figure 5.49. The false 

alarm signal is produced in T
2
-statistic methods as shown in Figure 5.49(a). 

Interrupted fault signal (missing fault signal component) is produced in the 

combination of fixed and adaptive threshold-based T
2
-statistic method as illustrated 

in Figure 5.49(b). Proper fault signal without missing component is produced and the 

false alarm is eliminated in the proposed method as illustrated in Figure 5.49(c).  
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Figure 5.49. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet. 

 

Experiment 3: Transient Test (No Fault) 

 A square wave input armature voltage is applied to test the transient condition 

such that the motor is permitted to run between 420 rpm – 1440 rpm. When 2 volts 

of the armature input voltage is applied to the plant the output speed is measured to 

be 420 rpm. The input armature voltage is increased from 2 volts to 6 volts as shown 

in Figure 5.50 and the output speed is measured to be 5.18 volts from the tachometer 

such that 5.18 volts of the output corresponds to 1440 rpm of speed. Both noisy and 

de-noised speed and armature current of the motor are plotted in Figure 5.51 and 

Figure 5.52, respectively. 

 False alarm signals are produced in the T
2
-statistic method as shown in Figure 

5.53(a). No alarm signal is produced in the combination of fixed and adaptive 

threshold-based T
2
-statistic method and proposed method, the combination of fixed 

and adaptive threshold-based T
2
-statistic with de-noised by wavelet method. 

Although no fault is applied to the system, the transient states are evaluated as a fault 
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in the usual T
2
-statistic method. This confirms the fact that usual T

2
-statistic fault 

detection methods are not applicable to the systems with variable set-points. On the 

other hand, the proposed method prevents the false alarm as shown in Figure 5.53(b) 

and Figure 5.53(c).  

 

 
Figure 5.50. Applied Input Voltage. 

 

 
Figure 5.51. Measured Speed a) Noisy, b) De-noised by Wavelet. 
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Figure 5.52. Measured Current a) Noisy, b) De-noised by Wavelet. 

 

 

 
Figure 5.53. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet. 
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5.2.2.1. (b) Closed Loop Tests 

 

Experiment 4: Actuator Fault  

 The experimental test is performed that 4 V of the set-point voltage 

(corresponding to 1130 rpm) is applied to the closed-loop system. Actuator fault is 

applied to the input (armature voltage) of the system while it is running in the steady-

state operation such that the fault signal as shown in Figure 5.54 is applied to test 

response of the closed-loop system. Both noisy and de-noised signals of the 

measured speed and current are illustrated in Figure 5.55 and Figure 5.56, 

respectively.  

 

 

Figure 5.54. Applied Fault Signal to the Input (Armature). 
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Figure 5.55. Faulty a) Measured Output Shaft Speed, and b) Wavelet Processed Shaft 

Speed Signals. 

 

 
Figure 5.56. Faulty a) Measured Armature Current, and b) Wavelet Processed 

Armature Current Signals. 

  

Fault alarm signals are indicated in all methods as shown in Figure 5.57 

accounted without any false alarm since the system operates in the steady-state 
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condition. However a missing fault signal is observed in the combined method, 

combination of fixed and adaptive threshold based T
2
-statistic method that is 

illustrated in Figure 5.57(b). 

 

 
Figure 5.57. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet. 

 

Experiment 5: Sensor Fault  

 In the current experiment, the fault is applied to the speed sensor. When the 

system is under the steady-state operation condition the fault is injected by 

disconnecting and reconnecting the speed sensor for duration of 0.5 seconds at 3.5 

sec after the start-up. After the applied sensor fault, the measured noisy speed and  

denoised speed are shown in Figure 5.58 and the measured noisy current and de-

noised current are illustrated in Figure 5.59.  
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Figure 5.58. Faulty a) Measured Output Shaft Speed, and b) Wavelet Processed Shaft 

Speed Signals. 

 

 
Figure 5.59. Faulty a) Measured Armature Current, and b) Wavelet Processed 

Armature Current Signals. 

 

The results are plotted in Figure 5.60. The alarm signals are observed in all 

methods without any false alarm signal since the system operates in the steady-state 

condition. However a missing fault signal is observed in the combined method, the 

combination of fixed and adaptive threshold-based noisy T
2
-statistic. 
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Figure 5.60. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet. 

 

Experiment 6: Transient Test (Sensor Fault) 

A variable set-point signal shown in Figure 5.61 is applied to the closed-loop 

system. Both the raw signal and wavelet processed speed and the armature current of 

the motor are shown in Figure 5.62 and Figure 5.63, respectively. 

 

 
Figure 5.61. Applied Set-Point Speed Signal. 
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Figure 5.62. Fault-Free a) Measured Output Shaft Speed, and b) Wavelet Processed 

Shaft Speed Signals. 

 

 
Figure 5.63. Fault-Free a) Measured Armature Current, and b) Wavelet Processed 

Armature Current Signals. 

  

While the system operates under the servo (tracking) condition as shown in 

Figure 5. 61, a fault is injected by disconnecting and reconnecting the speed sensor at 

1.75 s with duration of 0.7 seconds. After the sensor fault is applied, both the noisy 

and de-noised  speed and current are plotted in Figure 5.64 and Figure 5.65.  
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Figure 5.64. Faulty a) Measured Output Shaft Speed, and b) Wavelet Processed Shaft 

Speed Signals. 

 

 
Figure 5.65. Faulty a) Measured Armature Current, and b) Wavelet Processed 

Armature Current Signals. 

 

False alarms are produced in the T
2
-statistic (Figure 5.66(a)) method. False 

alarm is not indicated in the combined method, combination of fixed and adaptive 

threshold-based T
2
-statistic method but the fault signal appears with the missing 

component (Figure 5.66(b)). False alarm is not present in the proposed wavelet based 
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PCA method and the produced fault signal does not include any missing component 

(Figure 5.66(c)). 

 

 
Figure 5.66. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet.  

 

5.2.2.2. Experiments on Process Control System 

 

Experiment 7: Actuator Fault  

The experimental test is performed that 2.0 V of the step set-point voltage is 

applied to the closed-loop system. Original noisy and de-noised signals of the 

measured level and flow of the process are shown in Figure 5.67 and Figure 5.68, 

respectively. 
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Figure 5.67. Fault-Free a) Measured Liquid Level, and b) Wavelet Processed Liquid 

Level Signals. 

 

In the current experiment, the fault is applied to the pump input voltage. 

When the system is under the steady-state operation condition the fault is injected by 

disconnecting and reconnecting the pump input voltage signal for 2.0 seconds at 

21.75 sec after the start-up. After the applied actuator fault, the measured liquid 

cleared level signal and level signal are shown in Figure 5.69 and the measured flow 

and wavelet processed flow are illustrated in Figure 5.70.  
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Figure 5.68. Fault-Free a) Measured Flow, and b) Wavelet Processed Flow Signals. 

 

 
Figure 5.69. Faulty a) Measured Liquid Level, and b) Wavelet Processed Liquid 

Level Signals. 
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Figure 5.70. Faulty a) Measured Flow, and b) Wavelet Processed Flow Signal. 

 

The results are plotted in Figure 5.71 in which the left column plots show 

PCA method with their threshold values based on the noisy/de-noised signal and the 

right column plots show alarm signals produced.  

 The T
2
-statistic method based on the fixed thresholds illustrated in Figure 

5.71(a) produces false alarm signals. The missing fault signal components appear in 

the combined method, combination of fixed and adaptive threshold-based T
2
-statistic 

method as shown in Figure 5.71(b). The alarm signal produced from the proposed 

method, combined threshold-based T
2
 with de-noised by wavelet method is 

illustrated in Figure 5.71(c) such that both the false alarm caused during the transient 

state and the missing data are eliminated. 
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Figure 5.71. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet. 

 

Experiment 8: Sensor Fault 

When the system is under the steady-state operation condition a fault is 

injected by disconnecting and reconnecting the speed sensor for duration of 2.5 

seconds at 20.0 sec. After the applied fault, measured and wavelet processed output 

liquid level signals are shown in Figure 5.72. Applied level sensor fault does not 

affect the flow sensor signal. 
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Figure 5.72. Faulty a) Measured Liquid Level, and b) Wavelet Processed Liquid 

Level Signals. 

 

The results are plotted in Figure 5.73. The false alarm signal is produced in 

T
2
-statistic method as shown in Figure 5.73(a). Interrupted fault signal (missing fault 

signal component) is produced in the combined method in Figure 5.73(b). Proper 

fault signal without missing component is produced and the false alarm is eliminated 

in the proposed method as illustrated in Figure 5.73(c). 
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Figure 5.73. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet. 

 

Experiment 9: Transient Test (Actuator Fault) 

A variable set-point signal is applied to the closed-loop system to test the 

transient behavior. Level set-point is increased from 2.0 V to 3.0 V at 60 sec after the 

start-up. Both raw and wavelet processed liquid level and flow signals of the process 

are plotted in Figure 5.74 and Figure 5.75, respectively. 

When the system is under the steady-state operation the fault is injected by 

disconnecting and reconnecting the pump voltage for duration of 7.5 s at 64.0 

seconds. After the applied actuator fault, the measured noisy liquid level and  de-

noised level are shown in Figure 5.76 and the measured noisy flow and de-noised 

flow are illustrated in Figure 5.77. 
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Figure 5.74. Fault-Free a) Measured Liquid Level, and b) Wavelet Processed Liquid 

Level Signals. 

 

 
Figure 5.75. Fault-Free a) Measured Flow, and b) Wavelet Processed Flow Signal. 
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Figure 5.76. Faulty a) Measured Liquid Level, and b) Wavelet Processed Liquid 

Level Signals. 

 

 
Figure 5.77. Faulty a) Measured Flow, and b) Wavelet Processed Flow Signal. 

 

The results are plotted in Figure 5.78. False alarm is produced in T
2
-statistic 

method as shown in Figure 5.78(a). A false alarm is not indicated in the combined 

threshold-based T
2
-statistic method but the fault signal appears with a missing 

component as illustrated in Figure 5.78(b). False alarm is not present in the proposed 
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method, the combined threshold-based T
2
-statistic with wavelet processed, and the 

produced fault signal does not include any missing (interrupted) component as 

illustrated in Figure 5.78(c). 

 

 
Figure 5.78. PCA Monitoring Charts with the Alarm Signals a)T , b) combT , and 

c) combT with Wavelet. 

 

 Although no fault is applied to the system, the transient states are evaluated 

as a fault in the usual T
2
-statistic method. This confirms the fact that usual T

2
-statistic 

fault detection method is not applicable to the systems with variable set-points. On 

the other hand, the proposed method prevents the false alarm as shown in Figure 

5.78(b) and Figure 5.78(c). 

 Integral Squared Alarm Signal (ISAS) index is calculated to compare signal 

energy produced: 

 

2

0

( )
N

n

ISAS z n


        (5.1) 
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where z(n) denotes the alarm signal with N samples, n is a positive integer.  

 Calculated ISAS values are presented in Table 5.2 to provide information 

about the produced alarm signal for fault detection. The numerical values are 

regulated by 10
3
. In Table 5.2, if the calculated numerical values and the alarm signal 

energy are compared, the results obtained from the proposed method (Tcomb with 

wavelet) are numerically larger than the others. It confirms the fact that the alarm 

signal produced from the proposed method is more powerful than the others for the 

both electromechanical and process control systems.  

 

Table 5.2. Integral Squared Alarm Signal Comparisons 
  Electromechanical Experiments Process Control Experiments 

  EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 

P
C

A
 a

lg
o

ri
th

m
s 

 

Tα 

Fixed 

Threshold 

169.95
 

419.59 NA NA NA NA 

Tcomb 147.89 411.12 1.7423 60.705 75.132 20.142 

Tcomb 

With 

Wavelet  

171.96 574.63 2.5077 213.332 92.865 46.736 

 NA: Not Applicable-Due to the false alarms 

 

5.3. Conclusion 

 

The work of this chapter can be summarized in three main experimental applications: 

1. Application of observer-based fault detection method: A scheme for the 

detection and isolation of sensor faults for electromechanical system is 

presented. The single observer scheme, based on one Luenberger observer 

driven by the motor speed sensor, is utilized for fault detection. The 

capability of the residuals to detect and isolate different kind of faults in 

the sensors such as abrupt, incipient, intermittent and disconnection faults 
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are demonstrated. Four different experiments are performed to validate the 

observer based method. 

2. Variance sensitive adaptive threshold-based PCA method: In order to 

demonstrate the efficacy of the proposed PCA method, some experimental 

tests are performed. The experiments are carried out in open-loop and 

closed –loop conditions to test both the steady-state and transient operating 

conditions for the actuator and sensor faults under the constant load 

conditions. The results of the experimental tests ( the fixed threshold-based 

Q-statistic ( Q ), T
2
-statistic (T ), combination of fixed and adaptive 

threshold-based T
2
-statistic ( combT ) and proposed variance sensitive 

adaptive threshold-based ( vsaT ) methods) are presented for PCA 

monitoring. The alarm signals are computed for each method. The overall 

experimental results are summarized in a table for a complete comparison. 

Seven different experiments are performed to validate the variance 

sensitive adaptive threshold-based PCA method. 

3. Wavelet based combined PCA method: In order to validate the feasibility 

and reliability of the proposed combined PCA method using wavelet, some 

experimental tests are performed on an electromechanical system and 

process control system. Closed-loop experimental tests are performed to 

test the system for the actuator and sensor faults. The results of the 

experimental tests obtained from fixed threshold-based T
2
-statistic  T , 

combination of fixed and adaptive threshold-based T
2
-statistic  combT , and 

combination of fixed and adaptive threshold-based T
2
-statistic  combT  with 

wavelet based de-noised signal are presented for PCA monitoring. Integral 

Squared Alarm Signal (ISAS) index is calculated to compare signal energy 

produced to provide information about the produced alarm signal for fault 

detection.  
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6. CONCLUSIONS AND FUTURE WORK 

 

Fault detection and diagnosis has been becoming more and more important 

for process monitoring because of the increasing demand for higher performance as 

well as for increased safety and reliability of dynamic systems. Fault detection and 

diagnosis deals with the timely detection, diagnosis and correction of abnormal 

conditions of faults in a process. The early detection of the occurrence of faults is 

critical in avoiding product deterioration, performance degradation, major damage to 

the machinery itself and damage to human health or even loss of lives. 

The development and application of an observer-based scheme for FD has 

been demonstrated by application to an electromechanical system (DC motor). A 

scheme for the detection and isolation of sensor faults for the electromechanical 

system is presented. Single observer scheme, based on one Luenberger observer 

driven by the motor speed sensor, is utilized for fault detection. The capability of the 

residuals to detect and isolate different kind of faults in the sensors such as abrupt, 

incipient, intermittent and disconnection faults are demonstrated. 

Date-driven methods for FD use a data collected from a steady-state process 

to monitor T
2
-statistic with fixed threshold. For the systems where the transient 

values of the processes must also be taken into account, the usage of the fixed 

threshold in a PCA method causes the false alarms which significantly compromise 

the reliability of the monitoring systems. A combined algorithm (Combination of 

Fixed and Adaptive Threshold (Tcomb)) is proposed to overcome the problems raised 

from the fixed threshold and provide required confidence limit. However, the data 

collected from industrial processes often contain measurement noise that causes to 

produce the missing fault signal components when the combined threshold method is 

used.  

In order to overcome drawbacks, variance sensitive adaptive threshold 

method is proposed that is sensitive to the high variance which occurs due to noise. 

Wavelet method is used remove the noise before combined PCA analysis. 
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The proposed methods are implemented and validated experimentally both on 

a process control system and an electromechanical control system operating in open- 

loop and closed-loop conditions. Actuator fault, sensor fault and servo tracking 

conditions are experienced to demonstrate advantages and applicability of the 

proposed methods. The experimental results are compared with the results obtained 

from the conventional PCA monitoring methods. Tabulated data and experimental 

test results confirm the fact that the fixed threshold-based T
2
-statistic methods 

produce false alarms during the variable set-point signals. Fault signal with the 

missing (interrupted) components is obtained with the combined threshold-based T
2
-

statistic method. The false alarm and missing alarm signal problems are eliminated 

using the proposed variance sensitive adaptive threshold-based and combined 

threshold-based T
2
-statistic with wavelet processed methods. 

The main differences and important contributions of this research can be stated 

as:  

 Application of the observer based fault detection method to an 

electromechanical system. 

 A combined threshold PCA method is proposed and implemented in the 

present research to prevent false alarm signal when transient states taken into 

account. 

 A variance sensitive adaptive threshold PCA method is proposed and 

implemented to prevent missing fault alarm signal. 

 Wavelet-based combined PCA method is implemented to overcome the false 

alarms and to produce uninterrupted fault alarm signal. 

Some research topics that can be studied in the future are discussed as follows: 

 An alternative design approach of residual generators can also be derived 

(Parameter estimation, Parity space). 

 Another challenging research direction is to investigate the FD problem of 

nonlinear systems.  

 Adaptive threshold can be developed for residual signal. 



6. CONCLUSIONS AND FUTURE WORK  Alkan ALKAYA 

139 

 Generated residual can be evaluated by wavelet. 

 Partial Least Square (PLS) or Independent Component Analysis (ICA) can be 

used as statistical tools for monitoring processes.  

 Proposed threshold algorithm can be developed for Q-statistics. 

 All of the developed methods can be used for on-line applications to check 

the real time applicability. 
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APPENDIX 

 

GLOSSARY 

 

The terminology in this field is not unique. This makes it difficult to 

understand the goals of contributions and to compare different approaches. For 

example, what, the differences between fault or failure detection, isolation, 

identification and diagnosis are, is not very clear. Hence, the SAFEPROCESS 

Technical Committee of IFAC (International Federation of Automatic Control) 

discussed this matter and tried to find commonly accepted definitions (Isermann and 

Ball, 1997). 

About the states and the signals; 

Fault: An unpermitted deviation of at least one characteristic property or 

parameter of the system from the acceptable / usual / standard condition.  

Failure: A permanent interruption of a system’s ability to perform a required 

function under specified operating conditions.  

False alarm: is an indication of a fault, when in actuality a fault has not 

occurred. 

Malfunction: An intermittent irregularity in the fulfillment of a system’s 

desired function.  

Error: A deviation between a measured or computed value (of an output 

variable) and the true, specified or theoretically correct value.  

Disturbance: An unknown and uncontrolled input acting on a system.  

Missed detection: when there is no indication of a fault, though a fault has 

occurred. 

Residual: A fault indicator, based on deviation between measurements and 

model-equation-based computations.  

Symptom: A change of an observable quantity from normal behavior. 
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About the functions; 

Fault detection: Determination of faults present in a system and the time of 

detection.  

Fault isolation: Determination of the kind, location and time of detection of a 

fault. Follows fault detection.  

Fault identification: Determination of the size and time-variant behavior of a 

fault.  Follows fault isolation.  

Monitoring: A continuous real time tasks of determining the conditions of a 

physical system, by recording information, recognizing and indicating 

anomalies in the behavior. 

Residual computation: residual value is computed from the known variable. 

Residual evaluation: the residual is evaluated in order to detect, isolate and 

identify faults. 

Supervision: Monitoring a physical system and taking appropriate action to 

maintain the operation in the case of faults.  

About the system properties and its measurements; 

Reliability: Ability of a system to perform a required function under stated 

conditions, with in a given scope, during a given period of time.  

Safety: Ability of a system not to cause danger to persons or equipment or 

 the environment.  

Availability: Probability that a system or equipment will operate 

satisfactorily and effectively at any point of time. 

About the models; 

Quantative model: Use of static and dynamic relations among system 

variables and parameters in order to describe a system’s behavior in 

quantative mathematical terms.  

Qualitative model: Use of static and dynamic relations among system 

variables and parameters in order to describe a system’s behavior in 

qualitative terms such as causalities and if-then rules.  
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Diagnostic model: A set of static or dynamic relations which link specific 

input variables-the symptoms-to specific output variables-the faults. 

Analytical redundancy: Use of two or more (but not necessary identical) 

ways to determine a variable, where one way uses a mathematical process 

model in analytical form. 

 


