
ISSN-1308-416X

Cell Membranes Free Radical Research

Volume 2 Number i 1 June 2010

DITOR-IN-CHIEF Justafa Naziroğlu, İsparta, TÜRKEY

Abstract Book of

3rd International Congress on Cell Membranes and Oxidative Stress: Focus on Calcium Signaling and TRP Channels 22-27 June 2010 Isparta, Turkey

Süleyman Demirel University Medical Faculty Department of Biophysics

Cell Membranes Research

Volume 2 Number 1 1 June 2010 ISSN Numbers: 1308-4178 (On-line), 1308-416X Indexing: Google Scholar, Index Copernicus, Chemical Abstracts, Scopus (Elsevier)

EDITOR

Editor In Chief

Mustafa Nazıroğlu. Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Turkey. Phone: +90 246 211 33 10. Fax:+90 246 237 11 65 E-mail: mnaziroglu@med.sdu.edu.tr

Managing Editor

A. Cihangir Uğuz. Department of Biophysics, Medical Faculty, Suleyman Demírel University, Isparta, Turkey. E-mail: biophysics@med.sdu.edu.tr

EDITORIAL BOARD

Cell Membranes, Ion Channels and Calcium Signaling Alexei Tepikin. The Physiological Laboratory, University of Liverpool, Liverpool, UK

Andreas Lückhoff. Institute of Physiology, Medical Faculty, RWTH-Aachen University, Germany

Giorgio Aicardi. Department of Human and General Physiology, University of Bologna, Italy.

Jose Antonio Pariente, Department of Physiology, University of Extremadura, Badajoz, Spain.

James W. Putney, Jr. Laboratory of Signal Transduction, NIEHS, NC, USA.

Martyn Mahaut Smith, Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK.

Enzymatic Antioxidant Enzymes

Michael Davies. Deputy Director, The Heart Research Institute, Sydney, Australia.

Ömer Akyol. Department of Biochemistry, Medical Faculty, Hacettepe University, Ankara, Turkey

Xingen G. Lei. Molecular Nutrition, Department of Animal Science, Cornell University, Ithaca, NY, USA

Nonenzymatic Antioxidants, Nutrition and Melatonin Ana B. Rodriguez Moratinos. Department of Physiology, University of Extremadura, Badajoz, Spain.

Cem Ekmekcioglu. Department of Physiology, Faculty of Medicine, University of Vienna,, Austria.

Peter J. Butterworth. Nutritional Sciences Division, King's College, London, UK.

Şükrü Öter. Department of Physiology, GATA, Ankara, Turkey.

Technical Editor

Ercan Sözbir. Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Turkey.
E-mail: biophysics@med.sdu.edu.tr
İbrahim Kuş. Department of Graphic Design, Research
Hospital, Suleyman Demirel University, Isparta, Turkey.
E-mail: ibrahim@sdu.edu.tr

AIM AND SCOPES

Cell Membranes and Free Radical Research is a print and online journal that publishes original research articles, reviews and short reviews on the molecular basis of biophysical, physiological and pharmacological processes that regulate cellular function, and the control or alteration of these processes by the action of receptors, neurotransmitters, second messengers, cation, anions, drugs or disease.

Areas of particular interest are four topics. They are;

A- Ion Channels (Na $^+$ - K $^+$ Channels, CI $^-$ channels, Ca $^{2+}$ channels, ADP-Ribose and metabolism of NAD $^+$, Patch-Clamp applications),

B- Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, the biophysics of the radicals which springed up from oxygen),

C- Interaction Between Oxidative Stress and Ion Channels (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels)

D- Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)

READERSHIP

Biophysics Biochemistry

Biology

Biomedical Engineering

Pharmacology

Physiology

Genetics

Cardiology

Neurology

Oncology Psychiatry

Neuroscience

KEYWORDS

lon channels, cell biochemistry, biophysics, calcium signaling, cellular function, cellular physiology, metabolism, apoptosis, lipid peroxidation, nitric oxide synthase, ageing, antioxidants, neuropathy.

Organization Committee

Congress Honor Committee
Prof. Dr. Metin Lütfi BAYDAR,
Rector of Süleyman Demirel University

Prof. Dr. Yıldıran SONGÜR, Dean of Faculty Medicine, Süleyman Demirel University

Prof. Dr. Süleyman KUTLUHAN, Chief Physician, Süleyman Demirel University Research Hospital

Prof. Dr. M. Salih ÇELİK, President of Turkish Biophysical Society

Aziz BAYRAK General Secretary of Suleyman Demirel University

Congress Organization Committee
Prof. Dr. Mustafa NAZIROĞLU,
Chairman
Department of Biophysics, Faculty of Medicine,
Süleyman Demirel University

Prof. Dr. James W. PUTNEY, Jr. Vice Chairman
NIEHS Calcium Regulation Group Leader

Prof. Dr. Fatih GÜLTEKİN
Department of Biochemistry, Faculty of Medicine
Süleyman Demirel University

Assoc. Prof. Dr. Osman GÖKALP Department of Pharmacology, Faculty of Medicine Dicle University

Congress Secretariat

A. Cihangir UĞUZ & İ. Suat ÖVEY & Bilal CİĞ

Department of Biophysics, Faculty of Medicine
Süleyman Demirel University

Accountants
Ömer ÇELİK & Mustafa KÜÇÜKAYAZ &
Cemil ÖZGÜL
Department of Biophysics, Faculty of Medicine
Süleyman Demirel University

Information Manager & Webmaster
Ercan SÖZBİR
Department of Biophysics, Faculty of Medicine
Süleyman Demirel University

Technical Supports
Ins. Serdar Duran, Ins. Hakan Mahmut
Neğiş
Department of Media & Public Relations
Süleyman Demirel University

3rd International Congress on Cell Membranes and Oxidative Stress: Focus on Calcium Signaling and TRP Channels was supported by The Scientific and Technological Research Council of Turkey.

The Abstract book of the congress is published in this issue.

Ram semen contains sufficient quantities of superoxide dismutase (SOD) and much lower concentrations of glutathione peroxidase (GSH-Px) and catalase (CAT) to prevent oxidative damage. The anti-oxidant capacity of the sperm cell is limited, due to a small cytoplasmic component, which contains these anti-oxidants to scavenge the oxidants. However, the concentration of these antioxidants may decrease considerably by the dilution of the semen. The aim of the present

significantly elevated in the group with cysteine, compared to the other groups (p< oxidative stress in this group. SOD activity was the addition of 2 mM taurine (p< 0.001), while the level of MDA increased, indicating

The addition of methionine and carnitine at doses of 2.5 and 7.5 mM and inositol at doses of 7.5 mM provided a greater protective effect in the percentages of total abnormality in in the percentages of total abnormality in comparison to the control and inositol 2.5 mM

supplementation with antioxidants did no

biochemical

parameters,

comparison to the control group (p>0.05). The significantly affect LPO and total GSH levels in and 51.3±1.6%) compared to the other groups subjective motility percentages (61.9±1.3% doses of carnitine and inositol led to higher

The extender supplemented with 7.5 mM

Oral Presentation 10

and Antioxidant Potential Activities of Post-Thawed Parameters, (LPO), Total glutathione (Total GSH) The Effect of antioxidants on Sperm peroxidation bovine (AOP

3rd International Congress on Cell Membranes and Oxidative Stress: Focus on Calcium Signaling and TRP Channels

maintenance of GSH and GSH-Px activities, when compared to controls. CAT activity was

demonstrated to be significantly higher upon

a water bath for the evaluation methionine (2.5 and 7.5 mM), carnitine (2.5 and 7.5 mM), inositol (2.5 and 7.5 mM) and no frozen in 0.25 ml French straws. Frozen straws were thawed individually at 37°C for 20 sec in additive (control), was cooled to 5°C and then

Oral Presentation 9

The influence of cysteine taurine on microscopic-oxidative stress parameters and fertilizing ability of bull semen following cryopreservation

Serpil Sarıözkan¹, M.N. Bucak², P.B. Tuncer², P.A. Ulutaş³, A. Bilgen²

¹Hakan Çetinsaya Experimental and Clinical Research Center, Faculty of Medicine, University of Ercives, Kayseri, Turkey

²Ministry of Agriculture and Rural Affairs, Lalahan Livestock Central Research Institute, Ankara, Turkey

³Department of Biochemistry, Faculty of Veterinary Medicine, University of Adnan Menderes, Aydın, Turkey

Oxidative stress significantly damages sperm functions such as motility, functional integrity, endogenous antioxidant enzyme activities and fertility due to lipid peroxidation induced by reactive oxygen species (ROS). The aim of this study was to determine the effects of antioxidants such as taurine and cysteine in Bioxcell extender on standard semen parameters, fertilizing ability, lipid peroxidation (LPO) and antioxidant activities comprising reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT) and dismutase (SOD) superoxide cryopreservation/thawing of bull semen. Nine ejaculates for each bull were included in the study. Three groups, namely taurine (2 mM), cysteine (2 mM), and control, were designed to analyze the antioxidants in Bioxcell. The addition of cysteine led to higher motility, compared to the other groups (p< 0.001). Cysteine showed a greater protective effect on the percentages of acrosome and total abnormalities in comparison to the other groups (p< 0.001). No significant differences were observed in hypo-osmotic swelling test (HOST), following supplementation with freeze-thawing antioxidants during the No significant difference process. observed in non-return rates among groups. In biochemical assays, the additives did not show elimination of effectiveness on the malondialdehyde (MDA) formation