EXTENDED JACOBI MATRIX POLYNOMIALS

RABIA AKTAS*, BAYRAM GEKIM AND AL QEVIK

ABSTRACT. In this paper, extended Jacobi matrix polynomials (EJMPs)
are introduced. The matrix differential equation satisfied by them

is given. A Rodrigues formula, orthogonality, linear generating mat-
rix functions and recurrence relations are presented for these matrix
polynomials. Furthermore, general families of multilinear and mul-
tilateral generating matrix functions are obtained and their applica-
tions are presented.

1. INTRODUCTION

Special matrix functions seen on statistics, Lie group theory and number
theory are well known in [4, 19]. In the recent papers, the classical orthogo-
nal polynomials have been extended to the orthogonal matrix polynomials
[2, 5,7, 11, 12, 14, 16]. Jédar and Cortés introduced and studied the hy-
pergeometric matrix function F'(A4, B; C; z) and the hypergeometric matrix
differential equation in [14] and the explicit closed form general solution of
it has been given in [13]. In [3, 5, 6, 10, 11, 16], Chebyshev, Gegenbauer, La-
guerre and Hermite matrix polynomials were introduced and various results
were given for these matrix polynomials. In (7], Defez et al. introduced and
studied Jacobi matrix polynomials so that ,(,A'B) (z) for parameter matri-
ces A and B whose eigenvalues, z, all satisfy Re(z) > —1. For any natural

number n > 0, the nth Jacobi matrix polynomial PAB) (z) is defined by

1;‘”) (B +1)n.

Also, Defez et al. shows that these matrix polynomials have the Rodrigues
formula:

=17
PAB)(z) = (———)—F A+ B+ (n+1)I,—nl; B+ 1,
n n!

(A,B) z(_l)n _ A —Bﬂ _ \A+nI B+nI
PA(z) = e (1- ) (1 +2) % o [ =)™ (2]

(1.1)
and satisfy the following orthogonality relation [7]:
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0 , m#n
where A and B € C™*" satisfy
Re(z) > —1 for z € 0(4), Re(n) > —1 for n€o(B), AB= BA.
In the scalar case, in order to give an unified presentation of the classical
orthogonal polynomials (especially Jacobi, Laguerre and Hermite polyno-

mials), Fujiwara [9] studied the polynomial F{*P (z; a, b, c) called extended
Jacobi polynomial (EJP) and defined by the Rodrigues formula

F;(:x,ﬁ) (z;a,b,c) = (——ncl)z (z— a)™*(b— g;)“’s (1.3)

d_(f:_" {(a:—a)"+° (b—x)"+ﬂ}, (c>0).

The polynomials F,(.a’ﬂ ) (z;a,b,c) are essentially those that were consi-
dered by Szegd himself [18, p. 58], who showed (by means of a simple
linear transformation) that these polynomials are just a constant multiple
of the classical Jacobi polynomials P,(f"ﬁ ) (x). By comparing the Rodrigues
representation for classical Jacobi polynomials and (1.3), it is not difficult
to rewrite Szeg®’s observation [18, p. 58, equation (4.1.2)] in the form (cf.,
e.g., [17, p. 388, Problem 11],[1],[15]):

Fe® b9 = cla- 0y Pe? (2252 41) a0

or, equivalently,
. 1
PP (z) = {c(a—b)}" F{*P) (5 {a+b+ (a—b)z};a,b, c) . (1.5)

Thus, as already pointed out by Srivastava and Manocha [17], the polyno-
mials F{*P) (z; a, b, c) may be looked upon as being equivalent to (and not
as a generalization of) the classical Jacobi polynomials PP (z). Further-
more, by recourse to certain limiting processes, it is easily verified that the
polynomials F,(,a'ﬁ ) (z;a,b,c) would give rise to the Laguerre and Hermite
polynomials (and indeed also the Bessel polynomials) just as the classical



Jacobi polynomials pleP) (z) do. Consequently, the main purpose of Fuji-
wara’s investigation [9] is already served by the classical Jacobi polynomials
themselves.

The EJPs F{*® (z;a,b,c) are orthogonal over the interval (a,b) with

respect to the weight function w (z;a,b) = (z —a)* (b— )? . In fact, it is
hold that

/ (z — a)* (b— 2)° F\*P) (z;a,b,c) F\*P) (z;a,b,c) dz (1.6)

cmtn (_1)a+ﬂ+1 (a— b)m+n+a+ﬂ+1 Fla+n+1)T(B+n+1)
nla+B+2n+1)T'(a+B+n+1)
where ., , is Kronecker delta and min {R (), R(8)} > —1; m,n € Ny :=
B0 = {0,1,2,...}.
Throughout this paper, for a matrix A € C™*", its spectrum is denoted
by 0(A). The two-norm of A, which will be denoted by ||A||, is defined by

e 1Y
w40 llall;

Om,n

Al =

where, for a vector y € C7, |lyll, = (yTy) 172 is the Euclidean norm of y. I
and 0 will denote the identity matrix and the null matrix in C™*", respec-
tively. We say that a matrix A in C™*" is a positive stable if Re(\) > 0 for
all A € 0(A) where o(A) is the set of all eigenvalues of A. If Ag, Ay, ..., An
are elements of C™*" and A,, # 0, then we call
P(z) = Apz™ + Ap1z™ 1 + ..+ A1z + Ap

a matrix polynomial of degree n in z. From [14], one can see

(A)p=AA+I)A+2D)...(A+(n=1)I); n>1; (Ao=1. (17
From the relation (1.7), we see that

(—1)f (=nd)k
I= s 0<k<n. 1.
GBI wl (oasEm (L5}

The hypergeometric matrix function F(A, B;C;z) has been given in the
form [14]

F(A,B;C;2) = Z e

for matrices A, B and C in C™*" such that C+nl is invertible for all integer
n > 0 and for |z| < 1. For any matrix A in C™*", the authors exploited the
following relation due to [14]

oo

(1-z)~ ] < 1. (1.9)
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In [8], if f(2) and g(z) are holomorphic functions in an open set €2 of the
complex plane, and if A is a matrix in C"*" for which o(A) C €, then

f(A)g(A) = g(A)f(A).
Hence, if B € C™*" is a matrix for which o(B) C Q and AB = BA, then

f(A)g(B) = g(B)f(A)-

Furthermore, in [7], the reciprocal scalar Gamma function, Iz =
1/T(2), is an entire function of the complex variable z. Thus, for any C' €
C™*", the Riesz-Dunford functional calculus [8] shows that I'"1(C) is well
defined and is, indeed, the inverse of I'(C). Hence: if C € C™*" is such
that C + nl is invertible for every integer n > 0, then

(C)n =T(C +n)T71(C).

2. EXTENDED JACOBI MATRIX POLYNOMIALS AND THEIR SOME
PROPERTIES

In this section, we define extended Jacobi matrix polynomials (EJMPs)
F,(,A'B) (z;a,b,c) and give some properties satisfied by these polynomials.

Definition 2.1. Let A and B € C™" be matrices satisfying the spectral
conditions Re(z) > —1 for each eigenvalue z € o(A) and Re(n) > —1 for
each eigenvalue 1 € o(B). For any natural number n > 0, extended Jacobi
matriz polynomials of degree n are defined by

F4B) (z;a,b,¢) = (c(b—a))" (2.1)
n - (_1)n+k .

;( k )—_(b—a,)kn!r(A+B+( +k+1)I)

T ' (A+B+m+1))T(A+ @+ 1) DT (A+ (k+1)]) (z—a)

(c>0).

With the help of hypergeometric matrix function, the matrix polynomi-
als F{AP) (z;a,b,c) defined by (2.1) can be rewritten as follows:

Remark 2.1. For EJMPs, we have

(c(a—1b)) " nIFAB) (z;a,b,c)
x —
bh—

= F(—nI,A+B+(n+1)I;A+I; Z) (A+1),. (22

Theorem 2.1. The extended Jacobi matriz polynomials

Y (z) = F{48) (z;0,b,¢)
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satisfy the matriz differential equation:

(z—a)(b—2)Y"(z)+{a(A+B+1)+bl —(A+B+20)z}Y' (z)
+(b-a)Y' (x)A+n(A+B+(n+1)I)Y(z)=0,a<z<b
(2.3)
where all eigenvalues z of the matrices A and B satisfy the condition
Re(z) > —1.

Proof. The hypergeometric matrix function W (z) = F(a, B;7; z) satisfies
matrix differential equation [13]

2(L=2)W" (2) —zaW' (2)+ W' (2) (Y= 2(B+I))—aW (2) =0 (2.4)
where 0 < 2| < 1, a, 8,7 € C™*" , 4 = By and also (7y 4+ nl) is invertible
for all positive integer n > 0. Getting z = —3;_;2, a=A+B+(n+1)I,
B=-nl and v = A+ I, we have

F(—nI,A+B+(n+1)I;A+I;:—:—:) (A+1),

= (c(a—0b))""nlF4PB) (z;a,b,c)

from Remark 2.1. Using differential equation (2.4), we obtained the
desired differential equation. 0O

Corollary 2.2. In (2.8), getting a = —1,b = 1 and ¢ = 1, we obtain

Jacobi matriz differential equation for the polynomials P{E™) (z) [7]. For

the scalar case r = 1, taking A = a and B = f with o, > —1 in (2.3)

gives the scalar extended Jacobi differential equation. If we get A = a and

B=p,withaopf>-1l,a=-1,b=1andc = % in (2.8), then (2.3)

is(ged;zced to scalar differential equation satisfied by the Jacobi polynomials
o ().

Corollary 2.3. The polynomial Y (z) = HAB) (z;a,b,c) is a solution of
the differential equation

a [(z -0) -2 (o) (£22) AJ

b—=zx

r—a 4
+n(A+ B+ (n+ 1)1)(b—z)A+BY(x)(b_x) =0

fora<z <b.

Proof. Premultiplying (2.3) by (b — a:)A+B and postmultiplying it by

(i —:) and rearranging, we have (2.5) for a < z < b. O
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The following lemma derived in [5] will be useful for obtaining Rodrigues
formula for EJMPs.

Lemma 2.4. ( Defez and Jédar,[5]) For C and D € CT*" , suppose that
D is positively stable, DC = CD, and that C — D + kI and C + kI are

invertible for all nonnegative integers k. Then, for|t| <1,
F(-nI,D;C;t)=(1-t)" F (—nI,C—D;C; T———tt) , n=0,1,...
(2.6)

Theorem 2.5. Let A and B be matrices in C™*" satisfying the spectral
conditions Re(z) > —1 for each eigenvalue z € o(A) and Re(n) > —1 for
each eigenvalue ) € o(B) and AB = BA. Then, the extended Jacobi matriz
polynomials defined by (2.1) have the following Rodrigues formula:

R wabg = SO e-a) b-a)
.% [@=a** (b-2)""] | (> 0)2)

forn=0,1,2,....

Proof. Let D= (A+B+(n+1)I)and C=A+ I denote in Lemma 2.4
and let D be positively stable. Then DC = CD and the other hypotheses
of Lemma 2.4 are satisfied. Therefore, by (2.6)

F(—nI,A+B+(n+ 1)I;A+I;‘Z—:—Z)

b—z\" z—a

If we substitute this equality in (2.2) and use (1.8), we have

FA9 @abg = S (7)) @+nn, D"

n! pres
(z—a)f(b—2)" " (A+]1),. (2.8)
Moreover,
-k
L2 Je-a*] = (A+DI7 A+ D, -0 @- o,
k
:Z:—" [(b = z)B+nI] e (_ (B = 8 nI))k (b il III)B (b P x)n—k ’

s0, (2.8) can be rewritten in the form
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F (@a,0,0) = G (2 -7 (b-2) 7

(1) om0 £ -]

k=0

Therefore, we obtain

F{AB) (2:a,b, )

= EL a0 L (@t -],

which completes the proof. O

By comparing the Rodrigues representations (1.1) and (2.7), we can
write the following result:

Corollary 2.6. The extended Jacobi matriz polynomials F,EA’B) (z;a,b,¢)
are a constant multiple of Jacobi matriz polynomials P,(;A’B) (z) in the form

AP @abo) = (-t P02 (222 40). 2g)

By means of (1.2) and (2.9), one can easily see the next theorem for EJMPs.

Theorem 2.7. Let A and B be matrices in C™" satisfying the spectral
conditions Re(z) > —1 for each eigenvalue z € o(A) and Re(n) > —1 for
each eigenvalue 1) € 0(B) and AB = BA. Then,

b
/(:v —a)* (b—z)® F{AB) (z;a,b,¢) FAB) (250, b, ¢) dx
— (b a)ATBTE NI D 4L By 2+ 1))
N I"'(A+B+(n+1) )T (B+(n+1)1) p =
= F(A+(n+1)I)I" YA+B+2(n+1)1)
0 , m#*n

form,n € Ng := NU{0}.
Remark 2.2. In Theorem 2.7, gettinga = —1,b=1 and ¢ = % gives the

relation (1.2) for the polynomials P{E™ (z) [7]. For the scalar caser =1,
if we take A = o and B = 8 with o, 8 > —1 in Theorem 2.7, we have
(1.6). Getting A=a and B =, witha,f > —1,a=—-1,b=1andc=}

gives orthogonality relation for the classical Jacobi polynomials P,(.B'a) (z).
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3. GENERATING MATRIX FUNCTIONS FOR THE EJMPS

In this section, we derive families of linear generating matrix functions
for the extended Jacobi matrix polynomials.

Theorem 3.1. Assume that all eigenvalues z of the matrices A and B of
the extended Jacobi matriz polynomials FAB) (z;a,b,c) satisfy condition
Re(z) > —1. Then we have

Y (e(a—b) " (A+ B+ Dy FP (250,b,0) [(A+ )] 7 8"

n=0

=(1_t)_(,pr[,.“)F<A+B+I A+B+2IA I 4t(z — a) )

2 4 2 "(a—1b)(1—1t)?
3.1)
where |t| < 1 and A,B € C™*".

Proof. By (1.8) and (2.2), we easily see that
Y (c(@a=b)"(A+ B +1)n F*®) (z;0,6,0) [(A+ D)a] 7 "

n=0

X e~ [(A+B+Dp(—nl)k( A+ B+ (n+1)I)
g ZZ{( (n):jk! (n+ 1))k

n=0 k=0

(a+ng (32) w}
& [(A+B+Da(-)*(A+ B+ (n+1)I)
. EZ{ (n—k)! k! :

=0 k=0

KA+Ikr'(b‘j)kW}

E(A+B+I)n+2k( L+ (:—‘S) i

%!
e nlk!

2 (A+B+ Dy (-1 (z—a\"
- (sl U (2-0)
(A4 B+ (2k+1)I), t¥
N k!

3

Ms

3

KA+nu*}

where

(A+B+ 1) (A+B+m+ 1)) =(A+B+ )tk
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By (1.9), since

55@¢+B+@k+nlhﬂ:=u_ﬂ%MBH%HN%

|
ne0 n:

we get

f: (c(a=b)"(A+B+1), F,ﬁA'B) (z;a,b,¢) [(A+ I)n]_1 "
n=0

_ f: { (A+ B+ 1) (—1)*(1 — t)—(A+B+@k+1)1) ¢k

!
— k!

A+ D (:j;’)k}.

From (1.7), we may write that

(A+B+I)2k=22"(

A+B+I\ (A+B+2I
2 k 2 k,

which implies

ixda—wrWA+B+nnm*m@m@@KA+nA*ﬂ

n=0

= (1- t)—(A+B+1) f: 2% (A+?+1)k (A+B;+2I)k (—=1)*¢
k=0 k(1 —t)2k

[Aa+D,™ (::Z)k}

_ A+B+I A+B+2I 4t(z — a)
ot (A+B+I)F i 5
W ( BN B (a—b)(l—t)z)

The proof is completed. O

In a similar manner as in the proof of Theorem 3.1, one can easily obtain
the next results.

Theorem 3.2. Assume that all eigenvalues z of the matrices A and B of

the extended Jacobi matriz polynomials F4® (z;a,b,c) satisfy condition
Re(z) > —1. Then, we have
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i (cla=b)"(A+B+1I), {(4,B) (z;a,b,¢) [(B+ I)n]_1 t"

n=0

_ A+B+I A+B+2l 4t(z — b)
— (14 )-(A+B+D p . .
Ly 5 2 OBt h Ty )
@

where |t| < 1 and A,B € C™*".
Theorem 3.3. Let A,B,C,D € C™*". We get

i (c(a—1b)"" FAP) (z;a,b,c) t"

n=0
= Fy I+B,I+A;I+A,I+B;(x-a)t,(z—b)t ’
a—2>b a—>b

where AB = BA and Fy (A, B;C, D; z,y) is the matriz version of the Ap-
pell’s function of two variables which is defined by

00 k,n

Fi(A4B;CDizy) = . Dk Bloyk ()7 O oy
n,k=0 =
(WVE+VE<1),

where C +nl and D + nl are invertible for every integer n > 0 (see [2]).
Theorem 3.4. Let A,B,C,D € C™*". We have

o0

> (C)n(D)nll + B)7* (c(a— b)) ™" FAP (z30,b,0) (I + A)7 2"

n=0

= mifepvares E=tt e
4 3y &7y ’ ) a—b '“a—b *

4. MULTILINEAR AND MULTILATERAL GENERATING MATRIX FUNCTIONS
FOR EJMPs

In this section, we derive several families of bilinear and bilateral genera-
ting matrix functions for the extended Jacobi matrix polynomials generated
by (3.1) and given explicitly by (2.1).

We first state our result as the following.

Theorem 4.1. Corresponding to a non-vanishing function . (y1,-..,Ys )
consisting of s complez variables yi, ...,ys (s € N) and of complex order p,
let

oo
By 1y ooy o3 2) 1= Z akQutvk (Y1, ey Ys )2F (4.1)
k=0

(a’k 7&03 [_l,,VéC)
and
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[n/p] s
B2 1y i) = Y {ak(C(a—b)) PP(A+ B+ Dn_pk

A, it
. Fr(:—zgc) (z;a,b,¢) [(A + I)p—pk] ' Dtk (Y1, Ys )} ¢* (42)

where A,B € C™", n,p € N and (as usual) [\] represents the greatest
integer in A € R. Then we have

(o]
M\ ;n
Z_%en,p,p,u (SB; Y1y Ys; t_p) t (43)
_ A+B+1 A+B+21 4t(z — a)
= (1=¢t)"A+B+hHp s g s e EENTE 8 O
REEE) I B e o T

-Ap,u(yh ---7ys;n)a
(It < 1)

provided that each member of (4.3) exists.

Proof. For convenience, let S denote the first member of the assertion (4.3)
of Theorem 4.1. Then, upon substituting for the polynomials

n
en,p,p,u (x; Y1y Ysy t_p)
from the definition (4.2) into the left-hand side of (4.3), we obtain

o [ [n/p]
5 = Z { Z ax(c(a—b) """ (4+ B+ I)n—ka,Ef’pi) (z;a,b,c)

n=0 | k=0

A+ Dope] ™ i@, -0, v )n"t"""‘} . (4.4)

Upon inverting the order of summation in (4.4), if we replace n by n + pk,
we can write

) i { i ar (c(a—b))""(A+ B+ 1), FYP) (z;4,b,c)

n=0 (k=0

A+ Dol ™ Rk (g1, w0 e}

= {i (c(@=b)"" (A+B+1), F{ (z;a,b,¢) [(A+I),] 't

n=0

[e o)
. Z aka+uk(y1, ey Ys )"Ik}

k=0

_ A+B+I A+B+2I 4t(z — a)
1 _ \—(A+B+I) . e ARET )
1-19) F( 3 s 2 ’A+I’(a—b)(1—t)2)

-Ap,,u(yl; ey Ys; 77)7
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which completes the proof of Theorem 4.1. a

By expressing the multivariable function

Qutvk(Y1,-Ys) (K €No, s €N)

in terms of simpler function of one and more variables, we can give further
applications of Theorem 4.1. For example, if we set

Cc
s=1and Qu.k(y)= L;(;+Vl)c(y)

in Theorem 4.1, where the nth Laguerre matrix polynomial Lg,A"\)(a:) is
defined by [11]

(DA

w4 DallA Dy 2,

L (@) =
k

where A is a matrix in C"*", A 4 nl is invertible for every integer n > 0
and ) is a complex number with Re (A) > 0 and generated by

Y LAV @) = (1- 1)U exp (%ﬁt ) (4.5)
n=0

[t <1, 0 <z < o0,

then we obtain the following result which provides a class of bilateral gene-
rating matrix functions for the extended Jacobi matrix polynomials and
the Laguerre matrix polynomials.

o0
Corollary 4.2. Let A, ,(y;2) :== > akLﬁchr",),‘,)c(y)z’c where
k=0

ar #0, u,veENy

and
[n/p] A
Onpuun(@ui0) = = 3 {or(cl@— 1) (A+ B+ Dnoph
k=0

B (10,b,0) [(A + Daprl ™ LTk (y)ck}
where n,p € N. Then we have
o0 17 =
> Onpuw (x; Y; z;) tn = (1 —t)~(A+B+D

n=0

A+B+I1 A+B+20 , . . 4tz—a)
'F< 3 T B e T

provided that each member of (4.6) exists.

)A#,u(y; D (46)
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Remark 4.1. Using the generating relation (4.5) for the Laguerre matriz
polynomials and taking ax =1, p =0, v = 1, we have

oo | [n/p]
h { > (cla-b)"P*(A+ B+ Dnpi

n=0 | k=0
CFAD (230,6,0) [(A+ Dl ™ L (i}
_ A+B+1 A+B+2I 4t(z — a)
= (1—p)-A+B+Dp ( : :
=) s 2 AL Ty aoe

e (72

where [t| < 1, |n] <1, 0 <y < o0.
Set
= = (A,B) -1
s=1 and Q,H_,,k(y) = (A + B+ I)k P“+uk (y) [(B + I)k]

in Theorem 4.1, where the nth Jacobi matrix polynomial P,(lA’B)(m) is de-
fined by Defez et al. in [7] and generated by

o]

S (A+ B+ 1)y PP (2) [(B+1)a] " £
n=0
K A+B+1 A+B+2I 2t(1 + )
= (A+B+I) x :
(1+1) e e )
(It <1) (4.7)

where all eigenvalues of matrices A and B satisfy Re(z) > —1, which was
given in [2]. Then, we obtain the following result which provides a class
of bilateral generating matrix functions for the extended Jacobi matrix
polynomials and the Jacobi matrix polynomials.

Corollary 4.3. Let A, ,(y;2) :== Y ax(C+D+1)i P‘Eiﬂ)(y)(D-i-I);lzk

k=0
where (ax # 0, p,v € Ny); and
enyP,#,V(x; y; C)
[n/p]
=y {ak (c(a=b)""""*(A+ B+ Inpk F2%) (z;0,b,¢)
k=0

A+ Dacpi)™ (C+ D + D PSR @)D + D3¢

where n,p € N and all eigenvalues z of the matrices C and D satisfy the
condition Re(z) > —1. Then we have
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& n
2 Onpuy (-’C;y; t—p) i (I gy Arasl)
n=0

A+B+1 A+B+2I ~ 4dt(z—a) )
(At Ay 2O ) Mty (49

provided that each member of (4.8) ezists.

y

Remark 4.2. Using the generating relation (4.7) for the Jacobi matriz
polynomials and taking ar, =1, p =0, v = 1, we have

oo [ [n/p] d "
Z Z (c(@a=8) """ (A+ B+ Dn_pk F,") (z;0,b,¢)
n=0 k=0

A+ I)n—pk]—l (C+D+1) P,EC’D)(y)(D 4 I);l'flktn_pk}
= _t)—(A+B+l)F(A+B+I A+B+2I;A+I; 4t(z — a) )

2ot 2 (a—b)(1—1t)2
_ C+D+1 C+D+2I 2n(1+y)
(C+D+1I) : A
(1+n) F( 3 - 2 s D+ I a+7)? :

where |n| < 1 and |t| < 1.

Choose s = 1 and Q4.k(y) = F‘Eﬁﬁ) (y;a,b,¢) in Theorem 4.1 where

u,v € Ng. We obtain the following class of bilinear generating matrix func-
tions for the extended Jacobi matrix polynomials.

o0
Corollary 4.4. Let A, ,(y;2) :== Y akF‘(‘iﬁ) (y;a, b, c) z* where
k=0

ap #0, p,v€Ng

and
[n/p] )
Onpun(@ui¢) =D {ar(c(@=)"""* (A+ B+ D pi
k=0
FAD (@30,0,0) [(A+ Daphl ™ FR (w30,b,0)¢*}

where n,p € N and all eigenvalues z of the matrices C and D satisfy the
condition Re(z) > —1. Then we have

s 7
> Onpuy (-”3 Y; Z;;) i = (1 —g)~(4+B+D)
n=0

A+B+I A+B+2l |  dt{z—a) _
F(HFHE AT A e ) et (09)

provided that each member of (4.9) exists.



Remark 4.3. Using Theorem 3.3 and taking ar = (c(a — b))_k , =0,
v =1, we have

n=0

oo [ [n/pl
> { Y (cla=b)""* (A+ B+ Dnpk FS2 (x30,0,0)

k=0

A+ Duepel ™ (e (a = ) * FOP (50,b,0) 7 |

- A+B+I1 A+B+2I 4t(z — a)

— (1—¢t)"A+B+thp _ __4t(z—a)

(1-1) 7 Aty as
F(1+D1+C1+C1+D 891 W=b)n
a—b a—2>b

where CD = DC and (Va‘_"b)" + \/ (ya—_bgn <l

Furthermore, for every suitable choice of the coefficients ax (k € Np),
if the multivariable function Q,4vk(¥1,..,¥s), (s € N), is expressed as an
appropriate product of several simpler functions, the assertions of Theorem
4.1 can be applied in order to derive various families of multilinear and
multilateral generating matrix functions for the extended Jacobi matrix
polynomials.

5. SOME RECURRENCE RELATIONS FOR EJMPs

In this section, some recurrence relations satisfied by EJMPs are given.

Theorem 5.1. Let A and B be matrices in C™*" whose eigenvalues, z, all
satisfy Re(z) > —1. EJMPs satisfy

d ~(AB) .
g RN
= c(A+B+(n+1)I)F,(l_"1L ad )(:z:;a,b,c)
d* (aB)
() Ez_’C_F" (z;a,b,c)

=ck(A+ B+ (n+1)1), FATELBHED (4.6 5,¢)
for 0<k<n.
Proof. (i) By using (2.2), it can be proved.
(ii) It is enough to use (i). O

In order to obtain some recurrence relations, we use the following theo-
rem derived in [2].
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Theorem 5.2. Assume that ¥(u) has the formal power-series expansion
oo
¥(u) = Z'ynu" y Yo#0, 7, €EC™*". (5.1)
Define the matriz polynomials f,(z) by

(L4erGf%%>=zyM@ﬂCec”t (5.2)
n=0

The polynomials fn(z) defined by (5.1) and (5.2) have the following pro-

perties [2]:
2 Hmnic n(§),(§+) e

2fp(2) = nfu(z) = —(C + (n — 1) I) facs(z) — 2fp_4(z) , n 21,

2f(@) = nfa(z =—chk(z) 2z2fk(z) n>1,

n—1

zfp(z) = nfal) = Y_(-=1)"*(C + 2kI) fu(z) , n > 1,
k=0
where C € C™" and C + nl is invertible for every integer n > 0.

If we choose

(I+A+B)2n

C=A+B+1I ; Tn = 22ny|

(I+A);!
in Theorem 5.2, we see that the matrix polynomials f;, is
fa@)={cla=b)}"(I+A+ B) F4B) ((b—a)v+a ;a,b,c) (I + A); .

Hence, Theorem 5.2 gives following results, when put in terms of z rather
than v.

Theorem 5.3. The polynomials EJMPs have the following recurrence re-
lations:

(z—a) [(A+B+nI) —FA8) (g:a,b,c)
+c(a—b) F“anachA+nn]

= (A+B+nl) [nF(A’B) (z;a,b,¢)

-qa-wF“szabch+nn]
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(:c—a) F(A B)(a: a,b, c)—'n.F(AB)(z a,b,c)

n—1
= —{e(@a=0)}"(A+B+D);'> {cla—b)} *(A+B+1I),
k=0

{(A+B+I)F(AB)(:E a,b, c)+2(:z:—a) (AB)(a:abc)}

T+ AT+ A),
and

(z—a) F(AB)(.’C a,b,¢) — nF{48) (z;a,b,c)

= {c(b-a)}"(A+B +I);lnz:{c(b—a)}_k (A+ B+ (2k+1))
k=0

(A+B+1), F*P) (g;0,b,¢) (I + A (I + A)y,

where all eigenvalues z of the matrices A and B of the extended Jacobi
matriz polynomials Fi™® (z;a,b,c) satisfy the condition Re(z) > —1 and
A+ B+ nl is invertible for every integer n > 0.
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