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Abstract
This paper focuses on the structural, morphological, and optical properties of theCdS thinfilms on
the glass substrate with the effect of annealing. Chemical bath deposition (CBD) is a basic technique
that is used in this work to formCdS thinfilms. Thefilms′ (d) thickness is calculated to be 400 nm.
According to the XRD results, the particle sizes for the as-deposited and the annealedCdSfilm are
15.15 nmand 16.56 nm, respectively. The SEM images of formed nanowalls in the filmswere
compared for both the as-deposited and the annealedCdS structure. It was attainedwith the Raman
spectroscopy analysis that as-deposited and annealed films include the LOphononmodes of theCdS.
Moreover, FT-IR analysis was performed to determine the hydroxide ion (OH-) behavior depending
on the annealing effect. The optical band gap energy of the annealedCdS nanowalls reduced from
2.31 eV to 2.19 eV, according to theUVmeasurements. Additionally, theHall Effect is used to assess
the conductivity and resistivity of as-deposited and annealedfilms. This work demonstrated that CdS
films readily formnanowalls at 85 °C.

1. Introduction

The semiconductormaterials are used inmany fields such as solar cell [1, 2], transistor [3], light emitting diode
[4], lasers [5], photocatalyst [6], biosensor [7], biolabel [8]. In recent years, one of the prominent applications
among themany application areas of these usefulmaterials is solar cell applications. Considering the
technological development of solar cells recently, the first generation is crystalline silicon, gallium arsenic solar
cells and the second generation is thinfilms: CuInSe, CdTe, a-Si solar cells and finally third generation is dye
sensitive solar cells, organic solar cells [9]. Cd based thin films have lately attracted great interest from the
research community, with solar cells and other optoelectronic applications, and are used in themanufacture of
solar cells due to the low band gap. CdS semiconductor thinfilms are obtained by variousmethods such as
chemical deposition [10–15], electrodeposition [16], thermal evaporation [17], RFMagnetron sputtering [18],
chemical spray pyrolysis [19]. Different CdS semiconductormorphologies have been prepared using various
methods, including nanorods [20],flower-like nanorings [21], conifer-like [22], cauliflower-likemicrospheres
[23], nanowires [24],flakes [25], andflowers [26]. Chemical vapor deposition, plasma assisted approach,
microwave-basedmethod, solution growthmethod and hydrothermal pathwaymethods come to the forewhen
focusing primarily onwhich techniques are used in the literature to create nanowalls. In particular, nanowall
CdS structures could be fabricated by anothermethods that ismicrowave assisted chemical bath deposition [27]
and sputter deposition technique [28]. However, among all these techniques, chemical bath deposition is a
much simpler technique to obtain nanowalls. Research on nanowalls, fromorganic, inorganicmaterials to
improve the stability and efficiency of surface reaction and is of interest today because of its simplemethod of
synthesis, sometimes from a combination of both organic and inorganicmaterials. In general, nanowall
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structures can have a unique shape, large surface area, and a two- or three-dimensional structure. These
structures have both organic and inorganic chemical structures, including polymer nanowalls [29], graphene
nanowalls [30], and carbon nanowalls [31–33] depending on the composition, the chemical structures of the
nanowalls formations [34]. Inorganic nanowalls can be further divided into carbon-based and non-carbon-
based nanomaterials. Graphene and carbon nanowalls structures are among the examples that can represent
carbon-based nanowalls.Metal oxide andmetal sulfide-based nanowallsmake up themajority of non-carbon-
based nanowalls. Direct-current plasma chemical vapor deposition is used to create carbon-based nanowalls on
a silicon substrate [35]. The aforementioned approaches arewell recognized as being extremely challenging
procedures with intricate applications and precise control requirements. On the other hand, there are simple
fundamentalmethods that are a sequential ionic layer adsorption and reaction-SILAR, andCBD.CBD
technique is one of the easiest way is able to is applied to create non-carbon-based nanowalls [36]. In this study
we prefer to perform theCBDmethod that has been carried out bymany researchers to obtain CdS
semiconductor thinfilm since it is straightforward and affordable tomanage the growth rate, is homogeneous,
and adheres to crystal structures. In accordancewith the general reactions of theCBDmethod [37, 38], CdS
semiconductor thinfilms can be depositedwith different CBDmethod. Furthermore, the nanowall structures
significantly enhance the surface area compared to the smooth thinfilms [27]. This can be advantageous in
applications like solar cells and photodetectors, where interactionwith light or other particles is key. The unique
morphology of nanowall structures can enhance light absorption,making them excellent candidates for
optoelectronic applications. Nanowall structures can potentially improve charge carrier transport due to their
high-quality crystalline nature, which can help in reducing charge recombination and enhancing the efficiency
of devices by efficient charge carrier transport in the device [39–41]. The dimensions of the nanowalls (like
thickness, height, etc) can be tuned during the fabrication process, allowing control over their optical and
electronic properties. CBD is a simple, inexpensive, and scalable technique, which can deposit thinfilms on large
areas and different substrates. Thismakes theCdS nanowall structures a potentially viable choice for
commercial applications.

We focused onCdSmetal sulfide-based nanowalls in this paper. The effect of annealing on structural,
optical, and electrical properties of theCdS nanowalls was studied. UsingUV-Visible spectroscopy, the films’
optical characteristics were obtained. The structural properties of CdSfilmswere investigated usingXRD, SEM,
EDX, and FT-IR techniques. TheCdSfilms, the crystal structure and crystal size byXRD, surfacemorphology
and structure by SEM, chemical compositionwith EDS, andfinally hydroxide ion ( -OH ) behavior by FT-IR
were determined. TheHall Effectmethodwas used tomeasure the conductivity for the films andRaman
spectroscopy analyzed the vibrational and structural characteristics of CdSfilms.

2. Preparation of CdS andmeasurements

Chemical bath deposition techniquewas used to obtain CdS thin films on glass surfaces at 85 °C. In the solution
prepared to obtain theCdS semiconductor thinfilm by chemical bath depositionmethod, cadmium salts such as
cadmium sulfate (CdSO4), ammonia (NH3), thiourea (SC ( )NH2 2) /hydrazine (N H2 4) etc and ultrapurewater.
Hydrazine forms a complexwith cadmium in the solution and the cadmium complex formed gives +Cd2 ion to
the solution in a controlledmanner. Ammonia is used to release -S2 ions from thiourea by forming -OH ions in
the aqueousmedium. Thus, the ions released into the solution participate in the following reactions using the
ion-ionmechanism to produce cadmium sulfide (CdS) on the substrate surface [1, 4, 5].

+ « ++ - ( )2NH 2H O 2NH 2OH 13 2 4

« ++ +( ) ( )Cd HN Cd 4NH 23 4
2 2

3

+  + +- -( ) ( )SC NH 2OH S CN H 2H O 32 2
2

2 2 2

+ + - ( )Cd S CdS 42 2

A solution of 100 ml for the obtaining of CdSfilm of type n and nanowall structure; 0.2M cadmium sulfate,
0.3M thiourea, 1Mhydrazine, 25%ammonia, ultra-deionizedwater is composed of its components. Cadmium
sulfate, thiourea, hydrazine, ammonia, and ultra-purewater; a clean beaker of 100 ml is constantlymixedwith a
clean glass bar and placed in order. This beakerwas placed in a hot water bath inside the 500 ml beaker located
on the heater. The two cleaned glass substrates were immersed into perpendicularly the solutionwith 9.4
pHwhen the temperature of the solution reaches 85 °C.Thefilms are deposited on glass substrates for 35 min In
order tomeasure the optical properties of the preparedCdS semiconductor thin films, the front part of the films
formed on the two surfaces of the glass substrates was cleanedwith 38%hydrofluoric acid (HF) of 0.5M. The
filmswere rinsedwith deionizedwater and driedwith cold air. Then it was rinsedwith propanol and dried again.
Thus, two nanowalls structuredCdS semiconductor thin filmswere produced in a short time about 35 min at
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85 °CbyCBD techniquewhich is a straightforward and economicalmethod.One of themwas annealed in
nitrogen atmosphere at 623 K for 1 h.

The structural analyses were performed utilizing the range of diffraction angles 20°� 2θ� 80° in steps of
0.01° at 40 kV and 30 mAwithCuΚα1 radiation (λ= 1.5406Å) that available on aRigaku Smart Lab x-ray
diffractometer. A FEI-Quanta 650 Field Emission scanning electronmicroscope (SEM) that has an energy
dispersive x-ray (EDX) spectrometer and a computer-controlled image analyzerwas used to examine the surface
morphology of theCdS nanowalls at differentmagnifications. Raman spectroscopywas conducted to
understand the structural properties of CdS films, using a Renishaw inViaQontor Ramanmicroscope at 785 nm
wavelength. The Fourier Transform-Infrared (FT-IR) spectra of thefilmswere recorded by Jasco FT/IR-6700 in
thewavelength range of 4000 to 500 cm−1. Using the ShimadzuUV-1700,UV-visible spectrophotometer in the
wavelength range of 300 to1100 nmat room temperature, the optical transmission spectra, and the thicknesses
of the CdS nanowalls were calculated. The pHof the solutionwasmeasuredwith aHanna InstrumentsHI 2211
pH/ORPMeter. The electrical properties of thefilmsweremeasured by theHall effectmethodwhich includes a
Van der Pauw four-point probe configuration using gold contacts with amagnetic induction of 0.54 T at room
temperature.

3. Results and discussion

3.1. Structural analysis
Assignments of cubic (C) (PDFCardNo: 01-089-0440, 01-080-4441), hexagonal (H) (PDFCardNo: 01-077-
2306, 01-074-9664, 01-074-9665), orthorhombic (O) (PDFCardNo: 01-082-4658, 00-047-1179)were created
using standard JPDS (Joint Committee on PowderDiffraction Standards) cards. Plane indices were obtained by
comparing the observed ‘d’ and ‘2-theta’ values with the values on the cards. The as-deposited and annealed CdS
nanowallfilms showmixed phases of hexagonal, orthorhombic, and cubic. According to the XRDgraphs shown
infigures 1(a) and (b), each peak value corresponding to 2-theta angles was compared, and it was found that the
cubic and hexagonal structures were conserved in theC(111)-C(111), H(101)-H(101), andC(222)-C (222). The
indicesO(011)-O(110), O(305)-H(102), O(444)-C(220), andH(200)-H(112), however, all showed phase
transitions.

By using theDebye–Scherrer formula = l
b q( )Dhkl

K

cos
to the full width at halfmaximum (FWHM) of the

(111) peak for the cubic phase, the crystallite size of the CdS nanowalls was determined. Using the crystallite size
found for CdS nanowalls, dislocation densities (δ= 1/D2

hkl), crystallite numbers per unit area (N= d/D3
hkl)

(d= 400 nm found in the ‘Optical Properties’ section), and strain values (ε=β cos θ/4)were determined and
given in table 1 for the as-deposited and annealedCdS nanowallfilms. According to the data in the table
calculated based onC(111) peak at 2θ= 26.60°, it was observed that the FWHMdecreased, the particle size
increased, the number of crystals per unit area, the dislocation density and the strain decreasedwith annealing
[42]. The as-depositedCdSfilm’s nanoparticle size is 15.15 nm,while the annealedfilms is 16.56 nm forC(111)
according to the XRDdata and these results are compatible with literature that the calculated crystallite size of
CdS is found to be 20 nm for (111) plane [43]. High-temperature annealing is a technique commonly employed
by researchers to eliminate the defects formed during thin-film deposition and improve crystal quality [8, 9].
Exposure to high temperatures during annealing removes thewatermolecules in the film (supported by FT-IR

Figure 1.XRDpattern of theCdS nanowallfilms (a) as-deposited, and (b) annealed at 623K in nitrogen atmosphere.
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analysis). In addition, the small crystals absorb heat and coalesce and recrystallize to form larger crystals.
Therefore, the crystal size (D) increases as the FWHMdecreases [9, 10].

Figures 2(a)–(f) shows the SEM images at differentmagnifications of the glass/CdSnanowalls that were as-
deposited and annealed in a nitrogen atmosphere at 623 K. The low-dimensional image infigures 2(a) and (d)
shows that the glass/CdSfilm surface is composed of porous nanowalls. Also, thisfilm reveals nanowalls at
magnifications of 10 000X infigures 2(b) and (e), which resemble a particular variety of dahlia. Figure 2(c)

Figure 2.The SEM images of the as deposited and the annealedCdS nanowalls: (a) and (d) 1 000X (b) and (e) 10 000X and (c) and (f)
25 000Xmagnification. The images at 200 000X and 100 000Xmagnifications are given respectively inset at (c) and (f).

Table 1.The FWHM, crystallite size, dislocation density, number of crystallites per unit area, and strain values
for the as-deposited and annealedCdS films.

Nanowall glass/CdS FWHM (rad) D (nm) δ (1015 lines/m2) N (1018m-2) ε (10-3)

As-deposited 0.0094 15.15 4.35 0.11 2.29

623K 0.0086 16.56 3.65 0.088 2.09
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appears to have particularly sharp-edgedCdS nanowalls structures. Figures 2(c) and (f) at the 25 000X
magnifications exhibit CdS nanowalls forming nano channels that the nanowalls network is interconnected. As
shown inset infigures 2(c)–(f) 200 000X and 100 000Xmagnification, the thickness of the as-deposited and
annealed nanowalls was found to be∼55 nmand∼100, respectively. In the literature, thewall thickness is given
as 70–100 nm. It is seen that our values are compatible with the literature [43]The surface of the nanowalls
appears to be smooth.

Figure 3 shows SEM images of (a) as-deposited and (b) annealed cross-sectional surfaces of CdS nanowalls at
25 000Xmagnification. The corresponding cross-sectional images show that the as-deposited and annealed
nanowalls are well alignedwith lengths of 6.4μmand 4.4μmrespectively. Similar lengths have been reported in
previous studies [44].

The ratio of element weights according to EDS analysis is shown infigure 4. As-deposited glass/CdSfilms
have aCd : S atomic ratio of 2.95 and annealed nanowalls glass/CdSfilms have aCd : S atomic ratio of 3.44.

Raman spectroscopy is a powerful research technique used to analyze the vibrational and structural
properties ofmaterials. Raman spectroscopywas conducted to understand the structural properties of CdS
films, using a Renishaw inViaQontor Ramanmicroscope at 785 nmwavelength. The Raman spectra of the as-
deposited and annealed glass/CdS thin films are shown infigure 5 in the range of 250 cm-1 and 350 cm-1. It was
seen that peaks are broad in the spectrum. Broad peaks can be observed for amorphous or polycrystalline
materials [44, 45] andwe identified thefilms as polycrystalline byXRD analysis. The spectrumof as-deposited

Figure 3.At 25 000Xmagnification, SEM images of cross-sectional surfaces of theCdS nanowalls (a) as-deposited and (b) annealed.

Figure 4.EDS analyzes of the as-deposited and the annealedCdS nanowalls.
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CdS thin film exhibits peaks around 280, 303, 323, 330, and 346 cm-1. The Raman peaks at 280 cm-1 [46, 47] and
303 cm-1 [48, 49] correspond to the A1 longitudinal optical phonon (LO)modes of CdS. The other peaks are
multi phonon scatteringmodes of CdS [47, 50]. The spectrumof annealedCdS thinfilm exhibits vibrations
around 253, 258, 265, 271, 286, 299, 323, 333, 345 cm-1. TheA1 longitudinal optical phonon (LO) phonon
modes of CdS are seen at 286 cm-1 and 299 cm-1 in the annealedCdS film. The phononmodes seen in the as-
deposited CdS thinfilm, shifted from280 cm-1 to 286 cm-1, and from303 cm-1 to 299 cm-1 in the annealedCdS
thinfilm. The shifts in the Raman spectrum are attributed to the size effect or the surface optical phonon (SOP)
mode effect. Surface phononmodes are observed for particle sizes smaller than thewavelength of exciting laser
light inside the particles [51–54].

Figure 6 displays the FT-IR spectra of as-deposited and annealedCdS films. It has been observed that six
peaks in as-depositedCdS film spectrum and five peaks in annealed CdSfilm spectrum. The peak at
3595(4) cm-1 is associatedwith the -OH band stretching vibrations due to the intramolecular hydrogen bonds
[1]. The peak at 2121 cm-1 belongs to the isothiocyanate (-NCS)which formed due to the hydrolysis of thiourea
during the synthesis [6]. The peak at 1620 cm-1 is seen in the as-depositedCdSfilm disappearedwith annealing
and the peak intensity at 880 cm-1 decreasedwith annealing (874 cm-1). These peaks are associatedwith the
bending vibrations ofH2Omolecules that out of plane [6, 7]. Finally, the peaks at 759 (757) cm-1 and 651 cm-1

are ascribed to theCd-S stretching vibrations [6, 7].

3.2.Optical properties
The optical band gap determines the energy range of photons that can be absorbed by the semiconductor
material. For solar cells, it is essential tomatch the energy conversionwith the band gap energy of the absorber

Figure 5.Raman spectra of (a) as-deposited and (b) annealed glass/CdSfilms.

Figure 6. FT-IR spectra of CdS nanowalls (a) as-deposited and (b) annealed.
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material (CdS thinfilm). CdS has a relatively wide band gap in the range of 2.3 to 2.9 eV [45, 55, 56], which
corresponds to the visible and near-ultraviolet region of the electromagnetic spectrum. This range allows
efficient absorption, enhancing overall solar cell efficiency. The range of optical band gap values of CdS thin
films is crucial for solar cell applications as it influences absorption, photovoltaic conversion efficiency, and
effective device integration. Properly selecting the band gapwithin the suitable range enables CdS thin films to
enhance solar cell performance and overall energy conversion efficiency. According to our results the
transmission spectra of the 400–1100 nmwavelength range for the as-deposited and annealedCdS nanowalls are
shown infigure 7. Because of theCdS’s wide band gap, theCdS nanowalls absorbed light at awavelength of
roughly 500 nm. In our previous publications, we discussed the formulae used to calculate the thicknesses and
absorption coefficients (α) of thefilms [14]. The thickness (d) of thefilm is calculated to be 400 nm. Figure 7
depicts these films’α2 versus photon energy curves (c)–(d). The energy value forα2= 0 is the optical band gap
energy (Eg). The annealing caused the optical band gap energy of theCdS nanowalls to decrease from2.31 to
2.19 eV in their as-deposited and annealed.

CdS films have been produced on different substrates by theCBDmethod based on temperature, pH and
time control in literature [57]. According to these studies, polycrystalline n-type filmswith a forbidden energy
gap of around 2.40 eVwere obtained. In our study, similarly, nanowall-structured CdS semiconductor thin
filmswere produced byCBD at 85 °C in a short time like 35 minOne of the positive aspects of our study is that
the cadmiummolarity is quite low compared to the study of Vanalakar et al [43]. The pHof the solution is 9.4.

Figure 7. (a)–(b)Optical transmission spectrumand (c)–(d)α2-hv graph theCdS nanowalls of the as-deposited and annealed at 623K.
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3.3. Electrical properties
The results ofmobility and conductivity, which are two vital parameters for the electrical characterization of CdS
thinfilms, have an impact on the performance of solar cells. By optimizing themobility and conductivity of CdS
thinfilms, solar cells can achieve improved power conversion efficiency, reliable operation, and enhanced
overall performance. Based on this approach, the electrical characteristics of the CdS nanowallfilms are
investigated at room temperature using aHall Effectmeasuring set upwith aVan der Pauw geometry. The
following are the experimental procedures: Indiummetal is soldered using the ohmic contacts attached to the
four corners of the square-shapedCdSfilms. Themagnetic field’smagnitude and typical current carrying values
were 0.54 Tesla and 1mA, respectively. TheHallmeasurements of theCdS nanowallfilms in their as-deposited
and annealed states are carried out repeatedly to ensure a certain reliability of the results. The results are shown
in table 2. CdS nanowallfilms that have been as-deposited and annealed are n-type semiconductors. InCdS thin
films, it was observed that the carrier density increasedwith annealing, leading to a decrease inmobility.
However, the conductivity exhibited an inverse relationshipwith the carrier density, decreased as the carrier
density increased. Comparing the conductivity of the annealed nanowalls film to the conductivity of the as-
deposited nanowallfilm decreased from9.11×10-5 (Ω-cm)-1 to the 4.63×10-6 (Ω-cm)-1. Thismay be because
the concentration of the trapswhich result fromnanowalls that appear by annealing and dominates trapped
carrier becomes in critical level. Furthermore, themobility of charge carriers in CdS thinfilms is influenced by
temperature through various scatteringmechanisms such as lattice scattering. As the temperature increases,
these scatteringmechanisms becomemore pronounced, resulting in decreasedmobility. The conductivity of the
CdS thin film aids in effectively separating the produced charge carriers during photovoltaic energy conversion,
which enhances the efficiency of the solar cell whenCdS thinfilm is utilized as a buffer layer in thin film solar
cells.

4. Conclusion

In this paper theCdS nanowall thinfilmswere produced on glass substrates withCd2+ and S2 ion sources
included thiourea and cadmium sulfate by chemical bath deposition at 85 °C.,Hydrazine and ammoniawere
used as agents. The glass/CdS filmwas annealed in nitrogen atmosphere at 623 K for a 1 h. The annealed CdS
film has a particle size of 16.56 nm,whereas the as-deposited CdSfilm has a particle size of 15.15 nm, according
to theX - ray diffraction patterns. The structures of bothfilms are polycrystalline and consist of orthorhombic,
hexagonal, and cubic phases. As a result, the strain, the number of crystallites/unit area, and the dislocation
densities caused by crystal defects all reducedwith annealing. TheCd-S stretching vibrations have been
identified by FT-IR analysis and also it was seen thatH2O vibrations disappeared or decreasedwith annealing.
We discovered that the semiconductor CdS thinfilms showed the nanowall structures through the SEM
pictures. The optical band gap energy of theCdS nanowalls decreased from2.31 to 2.19 eVwith annealing
according toUVmeasurements. Additionally, both resistivity and conductivitymeasurements were done
utilizing theHall effect approach. As a result, CdS nanowall thin films have strong electrical conductivity in
addition to good optical and crystal quality,making them suitable formany applications such as solar cell
applications.
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Table 2.Band gap (Eg), bulk concentration,mobility (μ), resistivity (ρ), conductivity (σ) and carrier type of theCdS nanowalls as-deposited
and the annealed.

Annealing Temper-

ature (K ) BulkConcentration (cm-3) Mobility (cm2/Vs)
Resistivity

(Ω-cm) Conductivity (Ω-cm)-1
Carrier

Type

As-deposited 5.91× 1010 9.62× 103 1.10× 104 9.11× 10-5 n

623 5.60× 1011 51.67 2.15× 105 4.63× 10-6 n
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