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ANALYTICAL SOLUTIONS OF A SCALAR PARTICLE IN AN
ARBITRARY EXTERNAL MAGNETIC FIELD

H.F. KISOGLU AND K. SOGUT

ABSTRACT. In the study, analytical solutions and eigenvalues of a non-relativistic
scalar particle in an external magnetic field which is exponentially chang-
ing with the space are obtained dealing with Schrodinger equation. For this
purpose, Asymptotic Iteration Method (AIM), commonly used over the past
decade, is used to tackle the problem. Besides, ladder operators of the system
are achieved.

1. INTRODUCTION

By solving the eigenvalue problem in quantum mechanics in physics, we get the
information about the system we are interested. Trying to investigate the system
in this way may be done either relatively or non-relatively. Schrodinger equation,
which is used frequently in quantum mechanics [1, 2], is the energy eigenvalue
equation that is conctructed to probe the system non-relatively.

The eigenfunctions (eigenstates or wavefunctions) obtained from the eigenvalue
problem give clues about how the system evolves in time. Besides, the energy
eigenvalues obtained from this eigenvalue equation are ”fingerprints” of the system,
so to speak. On the other hand, an important component of the energy eigenvalue
problem is the potential energy that represents the interactions which the system
is exposed to. Therefore, the eigenstates and eigenvalues obtained from the energy
eigenvalue problem are the results that define the system for a given potential
energy.

Of course, some of mathematical tools are needed to solve this energy eigenvalue
problem in quantum mechanics. In the literature, there are many methods such
as Nikiforov-Uvarov (NU) method [3], continuous fraction method (CFM) [4], ....
The Asymptotic Iteration Method (AIM) [5] is also used to deal with the energy
eigenvalue equation, like the methods mentioned above. The advantage of AIM
over the others methods is that it can be used for both analytical and numerical
solutions of the energy eigenvalue equation [5, 6, 7).

Based on these motivations, non-relativistic eigenstates and energy eigenvalues of
a scalar (spinless) particle which travels under the influence of a space-dependent
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exponentially changing external magnetic field are analyitcally (exact solutions)
obtained in this study. Besides, ladder operators of the system are achieved. In
the problem in which the Schrédinger equation is addressed, the AIM is used as a
mathematical tool.

The study is organized as follows: Section 2 gives brief information about AIM
while, in Section 3, analytical solutions and the ladders operators of the system
tackled are achieved by using AIM. Finally, Section 4 summarizes the results.

2. OUTLINE OF ASYMPTOTIC ITERATION METHOD (AIM)

The general solution of a linear differential equation in the form of Eq.2.1 can
be obtained as in Eq.2.2, using the AIM in which the details can be found in the
Ref.[5]

(2.1) y"(x) = Mo(x)y' () + so(2)y(x),

T x t

(2.2) y(z) =exp —/a(t)dt C’Q—I—C’l/exp /(/\o(t)—l—Qa(t))dT dt| ,

where C; an Cy are constants. All derivatives of the \o(z) and sp(x) functions in
Eq.2.1 are available in the defined range of the independent variable z. One can
achieve the solution of Eq.2.2 via the asymptotic assumption given below for Ag(x)
and so(r) functions

Sn—1(x)  Ap—1(x)
for sufficiently large values of the n positive integer. Apart from these, the functions
Ao(z) and so(z) have below given iterative characteristics

(2.3)

(2.4)
An (@) = A 1(@) + sn—1(2) + Mo(@)An—1(2),  sn(@) = 85,1 () + 50(T)An—1(2)

For using the method for an eigenvalue problem in quantum mechanics, the
energy eigenvalues (E,,) can be reached by means of the following equation obtained
by Eq.2.3

(2.5) On(x, E) = sp(x, E)Ap—1(x, E) — A\ (2, E)sp—1(z, ) = 0.

If energy eigenvalues can be obtained in an analytical form by using Eq.2.5, such
problems are ”exact solvable” [7, 8]. Otherwise, the eigenvalues can be obtained
numerically [9, 10].

By using a manner similar to that of the eigenvalue, the function generator gine in
Eq.2.6 is used to find the eigenfunctions of the system (eigenstates or wavefunction)

xT

(2.6) fn(z) = Caexp —/j\:—((uu;du
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3. ANALYTICAL SOLUTIONS OF SCHRODINGER EQUATION FOR THE SYSTEM VIA
AIM

In the system we have dealt with, it is assumed that the scalar particle travels
within the magnetic field of B = ek derived from a vector potential in the form
of A = (0, %e"“‘,O) in three-dimensional cartesian coordinates where 5 and 7 are
real constants and x € (—o0, 00).

In natural units (i.e. i =c¢ = 1), Schrédinger equation for a free particle having

a mass of m and an electrical charge of ¢ in an external magnetic field is given as

2]

1 /. N2 _.
(3.1) 5= (F+04) v = By (@
where p; = —ia%j (j=1, 2, 3 and =1 = z,x9 = y,x3 = 2) is the momentum and £

is the total energy of the particle, while A is the vector potential gives rise to the
magnetic field.

A magnetic field such as B = Be"™k causes the particle to be exposed to a
magnetic force only on the z-axis. Thus, the particle is free on y and z axes. So,
the y and z components of the momentum of the particle become constant: p, = ky
and p, = k,. Thus, if we choose the space-dependent wavefunction in Eq.3.1 as
Y(7) = e Wkvt2k2)y (1) and put the expessions of the magnetic field and the vector
potential into the Eq.3.1, we obtain

2 202
5 A

2
_ -0
e pe p € } u(x)

where &2 = k2 + kZ — 2mE.

If we define a new variable as v = n‘Be”” then choose u(v) = v2p(v), Bq.3.2 is
yielded as
3.3 F') = 14+ 2+ L] ew) =0
(3.3) " (v) +ot 5 el)
in which ¢ = 22 and 0= % — 4—11. According to the singularity in this equation,

if we choose p(v) = v le™" f(v), we get the AIM form given in Eq.2.1 as follows

g -2 (1= o) - () e o

v

where v = —% 4/ u+ }1. If we compare Eq.3.4 and Eq.2.1, we can start the AIM
iterations with

(3.5) No(v) = 2 (1 v+ 1) s - (M)

v v

functions.
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By using the functions in Eq.3.5, one can achieve vy = —%(a +2),v1 = —%(a +
4),72 = —3(c 4+ 6) and 73 = —% (0 + 8) according to the first-four AIM iterations.
This allow us to generalize the v as

(3.6) o =5 20+ 1) 0]

with n =0,1,2,3,... Using Eq.3.6 and the definitions

g2 = k; + k% —2mE

we can obtain the energy eigenvalues as follows

(3.7) E, = % {(/gj +k2) — g (N + %)2]

where N =n + %

As for the eigenfunctions of the system (see in Eq.3.4), the function generator
given in Eq.2.6 is used with the same A\y(v) and so(v) functions in Eq.3.5 for AIM
iterations. One can get

fo(v) =1,

fir) = (0 +2) {1+ 5},

L) = (0 +3) 0 +4) {1+ L2 o0) + ERED 2
f3(v) = (0 +4)(0 +5)(o +

(=3) (=3)(=2) (2v)? (=3)(=2)(=1) (2v)®
6) {1 o] C22 I ol e ey Bl M g v e }

regarding to the first-four AIM iterations. So, the generalized eigenfunctions of
Eq.3.4 is achieved as

. - —n 2v)4
(3.8) fav) = (n+o+1), {d;) (_Ef—);n)d(d!) }
or
(3.9) fnv)=Mm+o+4+1), 1Fi(—n;—0o — 2n;2v)

where (a), =a(a+1)(a+2)---(a+n—1) is Pochhammer symbol and | Fy(a; b; 2)
is the Confluent Hypergeometric Functions [11]. Finally, the overall wavefunctions
(eigenfunctions or eigenstates) is yielded as

(3.10) U (7) = Nlei(yk”“kz)_'ju'y"r%1F1(—n; —0 —2n;2v)

where N7 is normalization constant.
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3.1. The Ladder Operators of the System. The ladder operators enable us to
investigate a system having dynamical symmetry via Lie algebraic methods [12, 13].
In order to find the ladder operators of the system, it is necessary to obtain firstly
the explicit expression of the normalization constant of the wavefunction. For this
purpose, the following relationship [11, 14] is used between Confluent Hypergeo-
metric Functions and Laguerre Polynomials

|
(3.11) VP (—not 1) = (ai—'l)nLg(x)

One can easily write the wavefunction in Eq.3.10 as

P (7) = ei(yky+zkz)un(y)

where

(3.12) un(v) = Nne_”lﬂ"’%lFl(—n; —o —2n;2v)

and N, is the generalized normalization constant we try to find.
So, using the expression in Eq.3.11, the wavefunction u, (v) can be linked to the
Laguerre polynomials as follows

(3.13) un (V) = Nne_yy7+%L;_”_2”_1)(2y)
By using the normalization rule of the Laguerre polynomial given as [14]

00 oty [Lﬁ{’)t] 2 i — I(n+a+1)
0 n!

one can easily normalize the u,(v) then achieve the NNV,, normalization constant as
follows

n!

3.14 Ny, =} ——
(3:.14) " (n+ 2y +1)!

Let’s suppose that the ladder operators of the system are in the form of [12, 13]

d
(3.15) Ly = As(v) + Bx(v)

and have the following characteristics

(3.16) Liu,(v) =letps
Using the properties given as [14]
d m m m
—(n+m)L7 1 (t) = (n+ L7, () + (=1 —2n—m)L7H(t)

we can following differential equations
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B g (vt 3) ) = VAT D)

[VC% - <y ey ;)] un(¥) = vV D £ 27 + 2tn i1 ()

If the differential equations in Eq.3.17 are compared with Eq.3.16, the lowering
operator and the [_ constant are got as follow

d 1
(3'18) L———VE-F(TL-F’Y—I/‘Fa)

- =+/n(n+2y+1)

In a similar manner, the raising operator and the [, constant are obtained as

. d 3
(3.19) L.,_—VE—(V—’I’L—’Y—i)

Iy =V(n+1)(n+2y+2)

4. CONCLUSION

In the study, exact energy eigenvalues and eigenfunctions of a Schrédinger parti-
cle in a space-dependent external magnetic field changes exponentially. Asymptotic
Iteration Method (AIM) that is widely used over the past decade, is used as a math-
ematical tool to deal with the problem. Furthermore, raising and lowerig operators
of the system that enable us to investigate a system having dynamical symmetry
via Lie algebraic methods [12, 13] are achieved. As a conclusion of the study, we
can say that the AIM gives quite accuracy results.
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