Comparison Of Classical And Flow Cytometric Osmotic Fragility And Eosin-5-Maleimide Binding Test In The Diagnosis Of Hereditary Spherocytosis

Cemil GÜLÜM^a, Pelin EROĞLU^a, Selma ÜNAL^b, Anıl TOMBAK^c, Gülhan TEMEL^d

^aDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, Turkey ^bDepartment of Child Health and Diseases, School of Medicine, Mersin University, Mersin, Turkey ^cDepartment of Internal Medicine, School of Medicine, Mersin University, Mersin, Turkey ^dDepartment of Biostatistics and Medical Informatics, School of Medicine, Mersin Uni., Mersin, Turkey

cemilgulum@gmail.com

Hereditary spherocytosis is a type of hemolytic anemia, caused by hemolysis of erythrocytes prior to normal survival due to hereditary damage to erythrocyte membrane proteins. Disease; It is diagnosed based on family history, clinical findings, presence of spherocytes in peripheral smear and laboratory data. The most common routine laboratory test is osmotic fragility (K-OF). It has been reported that the sensitivity of the test was low and that the K-OF test with the incubated sample was more sensitive than the fresh sample. For this reason, many tests that work with different methods to replace the K-OF test are being developed. Recently, Eosin-5-maleimide binding test (EMA) and flow cytometric osmotic fragility test (FC-OF) thats based on flow cytometry method have been developed. ¹⁻²

In our study, it was aimed to determine and compare disease severity and cut-offs of K-OF, EMA and FC-OF tests by using both fresh and incubated samples. The statistical findings are given in Table 1.

Table 1. Statistical	Findings of	K-OF. EMA an	d FC-OF Test.

Parameters	cut-off (Threshold Value)	AUC [% 95 CI]	B	Sensitivity [% 95 CI]	Specificity [% 95 CI]
K-OF	≤0,5	0,935	<0,0001	96,67	80,0
(Fresh)	•	[0,828-0,985]	,	[82,8 – 99,9]	[56,3 – 94,3]
K-OF	≤0,7	1,000	<0,0001	100,0	100,0
(Incubated)	20,7	[0,929-1,00]		[88,4 - 100,0]	[83,2-100,0]
EMA	>222.64	0,897	<0,0001	90,0	85,0
(Fresh)	×222,04	[0,778-0,965]		[73,5-97,9]	[62,1 - 96,8]
EMA	>102.40	0,853	<0,0001	93,33	75,0
(Incubated)	>193,48	[0,725-0,937]		[77,9-99,2]	[50,9 - 91,3]
FC-OF	>67.00	1,000	<0,0001	100,0	100,0
(Fresh)	>67,29	[0,929-1,000]		[88,4-100,0]	[83,2-100,0]
FC-OF	>7,95	0,930	<0,0001	80	95
(Incubated)		[0,821-0,983]		[61,4-92,3]	[75,1-99,9]

When the success of parameters in classification were compared, K-OF (Incubated)-EMA (Fresh) (p = 0.0397), K-OF (Incubated)-EMA (Incubated) (p = 0.0211), EMA (Fresh)-FC-OF (Fresh) (p = 0.0397) and EMA (Incubated)-FC-OF (Fresh) (p = 0.0211) were statistically significant, but there were no statistically significant difference in terms of other parameters.

Keywords: Hereditary spherocytosis, Flow cytometric osmotic fragility test, Eozin-5-Maleimid, EMA binding test, Osmotic fragility, Flow cytometry

References:

Won, D., L., Suh, J., S., Flow Cytometric Detection of Erythrocyte Osmotic Fragility. *Clinical Cytometry*, **2009**, 76B:135-141.

Ciepiela, O., Old and new insights into the diagnosis of hereditary spherocytosis. *Ann Transl Med*, **2018**, *6* (17):339.