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The principal purpose of this paper is to report an estimate of spin-wave gap of two-dimensional
magnets taking into account both the anisotropy and the Zeeman energy sufficiently large to dominate
over the dipolar interaction. The spin-wave gap is calculated for a magnetic field which is perpendicular
to the plane at zero temperature. The results are discussed in connection with experimental data
reported for epitaxial Fe-deficient yttrium garnet (YIG) films pulsed laser deposited onto the different
faces of Gd;Gas0, single crystal.
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1. Introduction

Magnetic properties of magnetic materials in which the film
thickness varies from two to three dozens of unit cells are a subject
of growing interest in recent years both experimentally and
theoretically. Magnetic anisotropy plays a key role in the physics
of ultrathin magnetic films. It affects the frequencies of spin-wave
excitations, the nature of the domain walls, and the magnetization
reversal process. The magnetic anisotropy originates from the
magnetic dipolar interaction (shape anisotropy) and the magne-
tocrystalline anisotropy due to the spin-orbit interaction. The
magnetic dipolar interaction always chooses in plane magnetiza-
tion in thin films but the spin-orbit interaction shows clearly
much more complicated behaviors. In addition, physically the
experimental data for magnetic anisotropies are usually inter-
preted in terms of competition between surface and volume
attributions and the magnetic anisotropy. Nonetheless, there are
difficulties for understanding the direction of magnetization in
such a way that the separation of these two effects is not
physically clear in ultrathin films.

The inclusion of the magnetic anisotropy causes an energy gap
in the spin-wave spectrum. Such a gap acts as an energy barrier to
the excitation of long wavelength spin waves, thus allowing a
finite order parameter at finite temperatures. For the case of a
uniaxial anisotropy favoring in-plane magnetization it has been
proposed that an effective gap arises due to the long range
character of the dipole interaction [1,2]. Bruno [1] finds for the
case of dipolar interactions only and the role of in-plane magne-
tocrystalline anisotropy is not included in this calculation. The
origin of the observed thermal stability of the magnetization [3,4]
is associated with the spin-wave gap induced by the in-plane
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anisotropy field [5]. The effect of an in-plane anisotropy is
dominant in stabilizing the in-plane magnetization of a two-
dimensional ferromagnetic film when compared to the effect of
dipolar interactions alone [6].

Experimentally, a size-effect for the temperature of magnetic
transition appears in MnF, epitaxial films with an orthorhombic
crystal structure in thick films (120-1250 nm) which is contributed
to the low anisotropy energy inferred from the spin-wave gap [7].
Investigations of the nature of magnetic anisotropy for iron garnet
films grown by rf-sputtering [8,9] and the pulsed laser deposition
technique (PLD) [10,11] are of great interest because of remarkable
magneto-optic properties. This material is very interesting for
applications involving significant magneto-optic and non-reciprocal
effects [12]. Popova et al. [12] showed that the production of the
magnetophotonic crystal structure lowers the magnetocrystalline
and uniaxial in-plane anisotropies and induces a partial out-of-
plane magnetization. Recently, an unusual magnetic anisotropy has
been observed in epitaxial Fe-deficient yttrium iron garnet (YIG)
films pulsed laser deposited onto the (111) and (00 1) faces of
GdsGasOy, single crystal and also explained the effects of reduced
cubic and strong negative growth induced uniaxial magnetic aniso-
tropy for these films [13].

It can be of interest to look at the spin-wave gap of two-
dimensional materials as a function of magnetic field which is
applied perpendicular to the film plane at zero temperature.

2. Calculation of spin wave gap
As a starting point, we consider a film in the (x,y) plane and

assume that the total Hamiltonian can be expressed generally as
follows:

H= HZ+Hexc+Ha (1)
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Here the Hamiltonian H contains the Zeeman term, an
exchange term, and an anisotropy term respectively. It is assumed
that all magnetic atoms have the same spin quantum number S.
The first term of Eq. (1) represents the Zeeman energy of the spins
in a field of magnitude h, which throughout we suppose is directed
along the z axis. The second term represents the exchange energy;
the proof that it is proportional to the scalar product of the two
spin vectors is quite familiar [14]| and is omitted here. The final
term in Eq. (1) describes the magnetic anisotropy energy which
has the following form:

Ha = YalK2S2(n) — K4S5 (1) (S; () + S, (1) — K5, S0() — K, Sx (m)S5 ()]
2)

so that this film as a cubic material, normal parallel to Z, is used to
obtain the above equation. The out-of-plane anisotropy is
expressed in terms of a second-order uniaxial anisotropy K, which
includes the shape anisotropy term and the modified fourth-order
cubic anisotropy K4. The in-plane anisotropy term is given in terms
of a uniaxial term K, which breaks the fourfold symmetry and a
modified cubic anisotropy constant K, and all of them depend on
the film thickness L. The sign convention contained in Eq. (2)
implies that positive (negative) values of anisotropy constants
favor the magnetization lying perpendicular to the film plane ( in
the plane).

The dipolar interactions contribute to the total anisotropy K,
and also modify the form of the spin-wave spectrum, thus
removing the logarithmic divergence in the magnetization due
to spin waves of small k [15] which denotes the spin-wave wave
vector. We note that there are two differences among the effect of
anisotropy KJ;, an easy plane film and a cubic crystal. For the bulk
crystal where K, =0 the spin-wave gap is proportional to K}, and
since in the three dimensional case the integrated spin deviation
converges to K, =0, the effect of K, is usually neglected.

We start with the assumption that the equilibrium orientation
of all the spins is along the z axis. To examine the spin wave gap at
zero temperature we first use the Holstein-Primakoff transforma-
tion [16]. Corresponding to our choice of coordinate axes, the
components of a spin vector S (n) are represented in terms of
boson creation and annihilation operators a; and a, by the
following expressions:

V28
2

V28
2i

Smy=S-a;a,, Sm= (an+a;), S'm)= (an—a;).

The exchange interaction has the largest energy in the mono-
layer films. For large values of k, ¢, are given by

e = DK 3)

where ¢ arises from the exchange forces and D = 2JSa?, in which J
is the Heisenberg exchange energy, S is the spin operator and a is
the lattice parameter. The total spin-wave Hamiltonian can be
written in the following form [1]:

H=Y |Aw, a,ﬁ-% (afat +ara_y) 4)
where A, = ¢, +ho+a and B, = p.

Here o and p arise from the anisotropy energy and are
independent of k, h, is the external magnetic field, and the
Zeeman interaction factors gup (gyromagnetic ratio and Bohr
magneton) have been absorbed in the definition of h,. The spin-
wave energy is given by the following expression:

wf = |Arl* — Byl 5)

This is of the same form as discussed by Bruno [1] for the
dipolar case at zero magnetic field. For our Hamiltonian we find

(with S=1) the following expression:

@ = (e +ho — 2Ky — 2K 4)(er + ho — 2K — 2K 4 — 2K). (6)

This gives a spin-wave gap at k=0,
w? = (ho— 2Ky — 2K 4)(ho — 2K5 — 2K 4 —2K)) (7)

which is not zero when the in-plane anisotropy K, vanishes. We
note that this effect arises from the cubic anisotropy allowed term
K4 and that the symmetry breaking term K’ only adds to the
magnitude of the gap and can be easily eliminated. It is useful to
introduce the anisotropic fields K, = guzH, and K4 = gugH,4, and
we obtain the following expression:

w? = (gup)*(h—2H, —2H4)%. )

Manuilov and Grishin [13] have measured the twofold and
fourfold anisotropy fields and also gyromagnetic g-factor as a
function of three different orientations of external magnetic field:
perpendicular to the film plane h//[001] and two in-plane
directions h//[100] and h//[110]. In the computation, in per-
pendicular magnetic field (h < 10% Oe),

H, = —2029 Oe, Hy = —57 Oe, andg// =2.004 for L=140 nm;
and Hy = —2152 Oe, Hy = —31 Oe, andg,, =2.014 for L=200 nm
films. Although Manuilov and Grishin [13] have observed twofold
and fourfold anisotropy fields in some of their materials, they did
not report any measured uniaxial term H) which breaks the
fourfold symmetry. This contribution only adds to the magnitude
of the gap, and can be easily eliminated. In perpendicular magnetic
field in Ref. [13], the ferromagnetic resonance demonstrates an
occurrence of soft mode. As seen from Eq. (8), the spin-wave gap
tends to zero in the magnetic field h = 2H, +2H,4. Manuilov and
Grishin [13] show that the uniform perpendicular magnetized
state becomes unstable with respect to the nucleation of magnetic
domains with in-plane components of magnetization tended
along some different directions. They detected this reorientation
phase transition at very low frequencies. Their experimental data
are well suited for our theoretical results. Fig. 1 shows a plot of our
expression for »? as a function of h. We calculate the spin-wave
gaps in the Kelvin range as 0.710 K (5.254 kOe) and 0.820 K
(6.068 kOe) for L=140 nm and L=200 nm respectively. Manuilov
and Grishin [13] have reported the resonance fields between 5 and
5.5kOe in their films. In comparison, a good coincidence is
obtained between our and their results. As seen in Fig. 1 the
important property is that both curves have a fast minimum at the
critical field of about 4.277 kOe, and thus the spin-waves indicate
distinct behavior for the external field being less than or greater
than this critical value. For the external fields larger than the
critical value, the spins are perpendicular to the plane of film, and
spin-wave gaps increase monotonically which is mainly due to the
Zeeman energy term. On the other hand, for the fields smaller
than the critical value, the spins are canted slightly according to
the film plane. The addition of the Zeeman energy to the spin-
wave gap is overwhelmed by the demagnetizing energy and the
curves decrease slowly with increasing applied field. Note that
the spin-wave gap is vanished at the critical value of 4.277 kOe.
This is only satisfied if the applied field equals the out-of-plane
anisotropies.

A similar behavior given above has also been observed in
ferromagnetic nanowires in the presence of dipolar interactions
and the Heisenberg-exchange interactions between nearest neigh-
bors [17]. They have also reported that if the applied field is
perpendicular to the ferromagnetic nanowire axis, there exists a
canting of the net spin reorientation which is away from the axis,
and the magnetization is spatially nonuniform owing to dipolar
interactions and that typically there are two phases and two
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Fig. 1. Magnetic field dependence of the energy for L =140 nm (circle lines) and
L=200 nm (cross lines).

distinct regimes of spin-wave behavior, corresponding to the applied
field which is being less than or greater than a critical value.

We now consider the polar coordinates ¢ and ¢, where @
measures the angle between the z axis and vector S and the
azimuthal angle ¢ measures the angle between the projection of S
on the (x,y) plane and the x axis. The total anisotropy energy is
obtained from the Hamiltonian given in Eq. (2). The equilibrium
configuration must be determined from the condition of the
minimum of the total anisotropy energy. Fig. 2 shows the calcu-
lated perpendicular magnetic field variation as a function of the
angle ¢ in films with two different thicknesses according to the
experimental data given in Ref. [13]. As can be seen, the applied
perpendicular magnetic field decreases with decreasing film
thickness and also the precession of magnetic spins takes place
in the applied field due to different magnetic anisotropies and
interactions in the magnetic film. Popova et al. [12] reported that
the applied external field must be less than 2 kOe in order to
ensure the out-of-plane saturation of magnetization for optimum
device operation. Although our calculation is little larger than their
result (2 kOe), it is very close and gives support to it.

In conclusion, our result confirms that the measured anisotropies
are more crucial in determining the spin wave gap and so validates the
presented theoretical model. The spin-wave energy gap does not vary
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Fig. 2. The magnetic field applied perpendicularly to the film plane as the rotation
angle ¢ for films with various thicknesses (L=140 nm (box lines) and L=200 nm
(cross lines)).

linearly with the in- and out-of-plane anisotropies but is magnified
because it is the geometric mean of these anisotropy energies which is
very important.
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