User profile picture

Doç. Dr. ŞEMSİ EKEN MERİÇ



  • Yöksis ID 144684
  • Researcher ID
  • ORCID ID 0000-0003-2783-1149
  • Scopus ID 57193680629
  • Scholar ID Xyy63ocAAAAJ
  • E-posta semsieken@mersin.edu.tr
  • Dahili Telefon +90 324 361 00 01 - 14575

Birim

FEN FAKÜLTESİ
MATEMATİK BÖLÜMÜ
GEOMETRİ ANABİLİM DALI

ÜAK Temel Alan Bilgisi

Fen Bilimleri ve Matematik Temel Alanı
Matematik
Geometri

25

MAKALE

Detay

24

BİLDİRİ

Detay

1

PROJE

Detay

5

TEZ DANIŞMANLIK

Detay

Son 5 Makale

RIEMANNIAN SUBMERSIONS FROM RIEMANN SOLITONS
MATEMATICKI VESNIK, vol. 76, no. 4, pp. 257–265 Link 2024
Silver Structures on the Riemann Extensions
Journal of Universal Mathematics, vol. , no. , pp. – Link 2024
Golden Riemannian submersions
FILOMAT, vol. 37, no. 17, pp. 5659–5670 Link 2023
Some Applications of $\eta-$Ricci Solitons to Contact Riemannian Submersions
Filomat, vol. 36, no. 6, pp. 1895–1910 Link 2022
RIEMANNIAN SUBMERSIONS WHOSE TOTAL SPACE IS ENDOWED WITH A TORSE-FORMING VECTOR FIELD
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, vol. 37, no. 4, pp. 1199–1207 Link 2022

Son 5 Bildiri

Some Remarks On Riemannian Maps From Ricci-Yamabe Solitons
20th International Geometry Symposium (18.07.2024 - 20.07.2024) Link 2024
Some Remarks on Contact-Complex Riemannian Submersions
Riemannian Geometry and Applications RIGA 2023 (22.09.2023 - 24.09.2023) 2023
Some Properties of Curvatures on the Total Manifold of a Riemannian Submersion
Studies on Scientific Developments in Geometry, Algebra, and Applied Mathematics Webinar (01.02.2022 - 03.02.2022) Link 2022
Contact-Complex Riemannian Submersions and $\eta-$Ricci solitons
18th International Geometry Symposium (11.07.2021 - ) 2021
Some Characterizations of Riemannian Submersions From Ricci Solitons
DiMoGeCH (22.05.2019 - 25.05.2019) 2019