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Abstract

Background: Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are
clonal stem cell disorders in which disrupted post-transcriptional regulation contributes to
aberrant hematopoiesis and leukemic transformation. The miRNA biogenesis machinery,
which comprises Drosha, DGCRS, Dicer, TARBP2, and AGO1, ensures the precise matura-
tion of miRNAs that control lineage commitment and proliferation. However, the extent to
which alterations in this pathway reshape hematopoietic gene networks during myeloid
disease evolution remains largely unexplored. Methods: Bone marrow samples from newly
diagnosed, untreated MDS and AML patients and matched healthy controls were analyzed
for the expression of five key miRNA biogenesis genes using quantitative real-time PCR.
Statistical comparisons, correlation matrices, and ROC analyses were performed to charac-
terize gene-expression differences. These results were integrated with multigene logistic
modeling, decision-curve analysis, and exploratory random forest/SHAP approaches to
evaluate molecular interactions and diagnostic relevance. Results: DROSHA, DICER1, and
TARBP2? were significantly downregulated in both MDS and AML, suggesting impaired
miRNA maturation and a loss of global post-transcriptional control. DGCRS expression
increased across higher-risk MDS groups, suggesting compensatory activation of the Micro-
processor complex, whereas AGO1 levels remained relatively stable, consistent with partial
maintenance of RISC function. Correlation analyses revealed a co-regulated DROSHA-
TARBP2-AGO1 module. ROC, logistic, and machine learning models identified DGCR8
and DICER1 as the strongest diagnostic discriminators. The integrated five-gene signa-
ture achieved high discriminative performance (AUC ~ 0.98) and showed promise but
remains preliminary potential for clinical application. Conclusions: Our findings suggest
that defects in miRNA biogenesis disrupt hematopoietic homeostasis, reflecting common
mechanisms in MDS and AML. The dysregulation of DICER1, DGCRS, and TARBP? offers
insights into miRNA-driven leukemogenesis and may pave the way for miRNA-based
diagnostic and therapeutic strategies, pending validation in larger cohorts. Although
transcript-level data are provided, future studies should include functional validation to
determine the impact on downstream miRNA processing and hematopoietic pathways.

Keywords: AML; MDS; miRNA biogenesis; DROSHA/DICERI genes dysregulation;
precision diagnostics
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1. Introduction

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are clonal dis-
orders of hematopoietic stem and progenitor cells characterized by ineffective hematopoiesis,
impaired differentiation, and increased genomic instability. Large-scale genomic studies
have identified recurrent mutations in FLT3, NPM1, CEBPA, TP53, and SF3B1, yet these
alterations alone do not fully explain the marked clinical and biological heterogeneity
of myeloid neoplasms [1-3]. In addition to these canonical drivers, recurrent mutations
in epigenetic regulators such as TET2, ASXL1, and DNMT3A, and RNA splicing factors
including SF3B1, SRSF2, and U2AF1 reveal the involvement of multiple regulatory layers.
These span chromatin remodeling to post-transcriptional control and collectively shape
disease pathogenesis. Among these regulatory mechanisms, the disruption of microRNA
(miRNA) biogenesis has recently emerged as a potential link between molecular lesions
and disturbed hematopoietic differentiation.

miRNAs are short (~22 nucleotides), noncoding RNA molecules that fine-tune gene
expression by guiding the degradation or translational repression of target mRNAs. The
biosynthesis of miRNAs involves a series of well-coordinated enzymatic steps, collec-
tively known as the miRNA biogenesis pathway. In the nucleus, Drosha and its cofactor
DGCRS form the microprocessor complex, which processes primary miRNA transcripts
(pri-miRNAs) into precursor molecules (pre-miRNAs). These molecules are exported to
the cytoplasm, where Dicer, assisted by its cofactor TARBP2, cleaves them into mature
miRNA duplexes. Mature miRNAs are then incorporated into the RNA-induced silencing
complex (RISC), where AGO1 mediates their interaction with target transcripts to regulate
post-transcriptional gene silencing [4,5].

Disturbances in this pathway can profoundly alter miRNA abundance and function,
thereby affecting key regulators of hematopoiesis. Drosha, an RNase III enzyme essential
for pri-miRNA processing, initiates the nuclear phase of miRNA maturation. Decreased
DROSHA expression has been detected in bone marrow stromal and hematopoietic cells
from MDS patients, suggesting impaired production of tumor-suppressive miRNAs such
as those of the miR-34 family under p53 control [6-8]. DGCRS, the double-stranded RNA
binding partner of Drosha, determines the precision of pri-miRNA substrate recognition
and cleavage. Its dysregulation can impair the microprocessor’s fidelity, weakening the
p53-miRNA feedback loop and promoting aberrant progenitor expansion [9,10]. Beyond
this regulatory axis, experimental models have shown that DGCRS8 haploinsufficiency
disrupts early stem cell differentiation and predisposes cells to myeloid transformation,
underscoring its essential role in maintaining hematopoietic lineage balance [11].

The cytoplasmic enzyme Dicer finalizes miRNA maturation. Conditional deletion
of DICER1 in murine osteoprogenitors disrupts the bone marrow microenvironment and
induces an MDS-like phenotype that can progress to secondary AML, underscoring the
contribution of stromal miRNA processing to hematopoietic stability [8]. Similarly, reduced
DICER1 expression levels in patient’s MDS stromal cells correlate with cellular senescence
and diminished support for hematopoietic stem cells [12].

TARBP2 (a Dicer-associated cofactor) stabilizes precursor miRNAs and enhances
Dicer’s cleavage fidelity during the miRNA maturation process. A frameshift mutation
identified in human cancers disrupts TARBP2 translation, leading to defective miRNA
processing and destabilization of Dicer [13]. Such impairment alters the global miRNA land-
scape and may influence cell differentiation and stress response pathways. Although data
in hematologic malignancies remain limited, variations in TARBP2 gene expression among
AML subtypes could reflect lineage-specific differences in miRNA maturation efficiency.

AGO (Argonaute) proteins, the core effectors of the RISC, anchor mature miRNAs to
their target transcripts and mediate post-transcriptional repression. Beyond this cytoplas-
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mic role, AGO can also be associated with chromatin to modulate transcription in a small
RNA-dependent manner. Experimental evidence has shown that chromatin bound AGO
complexes participate in transcriptional regulation, providing a potential link between
miRNA guided silencing and epigenetic control mechanisms [14]. Although not yet fully
explored in hematologic malignancies, such nuclear functions may influence gene networks
involved in hematopoietic differentiation and leukemic transformation.

Emerging data indicate that these biogenesis factors act in concert rather than in
isolation. Cross-talk among Drosha, DGCRS, and Dicer likely determines overall processing
fidelity and miRNA abundance. Hence, even modest changes in expression may produce
cumulative disturbances in hematopoietic gene regulation and differentiation.

Despite such evidence, most existing studies have evaluated these genes individually
or within cell-based systems that lack clinical context. Comprehensive assessments inte-
grating multiple miRNA biogenesis genes in human MDS and AML cohorts remain scarce.
This study therefore examined the expression of DROSHA, DGCR8, DICER1, TARBP2, and
AGOI1 in bone marrow samples from untreated patients with MDS and AML, compared
with healthy controls. Through combined expression, correlation, and diagnostic analyses,
we aimed to determine whether concurrent alterations in the miRNA processing machinery
might represent a shared molecular signature of myeloid transformation and possibly
provide a framework linking defective biogenesis to the continuum between dysplasia and
leukemic progression.

2. Materials and Methods
2.1. Patient Cohort and Diagnostic Classification

Bone marrow aspirates were collected from 20 newly diagnosed and previously un-
treated patients with acute myeloid leukemia (AML) and 34 patients newly diagnosed
and previously untreated with myelodysplastic syndrome (MDS). A power analysis was
performed prior to study initiation to ensure adequate statistical power. Although samples
were obtained at initial presentation, final group assignment was made only after complete
clinical, cytomorphologic, cytogenetic, and laboratory evaluation. Diagnostic confirmation
and subclassification were performed by an experienced hematologist to ensure consistent
and accurate classification.

The control group consisted of seven individuals without hematological or malignant
disorders. Because bone marrow aspiration cannot ethically be performed in healthy
volunteers, control samples were obtained from patients undergoing open-heart surgery,
during which a minimal amount of marrow is incidentally aspirated from the sternal cavity
and otherwise discarded. This ethically acceptable approach has been widely used in
previous gene- and miRNA-expression studies. Only age and sex were available for the
control group due to the intraoperative nature of sampling.

To minimize biological confounding across groups, strict exclusion criteria were ap-
plied during patient and control selection. All enrolled individuals (patients and controls)
were required to be free of chronic systemic disease, active infection, prior chemotherapy or
radiotherapy, regular medication use, smoking, alcohol consumption, or herbal supplement
intake. These measures ensured that neither inflammatory conditions nor comorbidities
influenced the gene-expression profiles analyzed.

AML diagnosis and subclassification were established according to the French—
American-British (FAB) criteria, with the following distribution: AML-MO (n = 7), AML-M1
(n=5), AML-M2 (n =1), AML-M4 (n = 4), and AML-M5 (n = 3). MDS classification fol-
lowed the 2016 World Health Organization (WHO) criteria: MDS-SLD (n = 1), MDS-RS-SLD
(n =4), MDS-MLD (n = 16), MDS-EBI1 (n = 10), and MDS-EB2 (n = 3). Risk stratification
using the Revised International Prognostic Scoring System (IPSS-R) categorized patients
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into very low (1 = 4), low (n = 12), intermediate (n = 14), high (n = 3), and very high (n = 1)
risk groups.

All participants provided written informed consent, and the protocol was approved by
the Institutional Clinical Research Ethics Committee (2015/227). The study was conducted
in accordance with the Declaration of Helsinki (2013 revision). Comprehensive clinical and
hematologic characteristics of the study population are summarized in Table 1.

Table 1. Clinical and some hematologic characteristics of study groups.

Characteristic C((;ln_tr(;)l S MDS (n = 34) AML (n = 20)
Gender (M/F) 5/2 19/15 10/10
Age years 64 69 63
(median, range) (55-76) (50-88) (43-77)
MDS-SLD: 1
MDS-RS-SLD: 4
cl‘:sI:i(f)icza(:il(fn ) MDS-MLD: 16 )
MDS-EBL1: 10
MDS-EB2: 3
Very low: 4
Low: 12
IPSS-R category ) Intermediate: 14 )
High/Very high: 4
Number of - 0: 5; 1: 14; 2: 13;3: 2 -
cytopenias
<5%: 21
BM blast - >5-<10%: 10 .
percentage >10-<29%: 3
o MO: 7, M1: 5, M2: 1,
FAB classification - - M4: 4, M5: 3
Good: 3;
Cytogenetic risk - - Intermediate: 14;
Poor: 3

2.2. RNA Extraction and cDNA Synthesis

Total RNA was extracted from bone marrow aspirate cells using TRIzol reagent (In-
vitrogen, Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
protocol. RNA quantity and purity were determined spectrophotometrically using a Nan-
oDrop 2000 (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA). Complementary
DNA (cDNA) was synthesized from 2 pg of total RNA using Revertaid Reverse Transcrip-
tase (Thermo Fisher Scientific, Vilnius, Lithuania). The reverse transcription reaction was
carried out at 37 °C for 60 min, followed by enzyme inactivation at 95 °C for 5 min. The
resulting cDNA samples were stored at —20 °C until further analysis.

2.3. Quantitative Real-Time PCR (qRT-PCR) Analysis

Quantitative real-time PCR for DROSHA, DGCRS, DICER1, TARBP2, and AGO1 genes
was performed using the ABI Prism 7500 Real-Time PCR System (Applied Biosystems,
Thermo Fisher Scientific, Waltham, MA, USA). Each 25 uL reaction mixture contained
12.5 uL of TagMan Gene Expression Master Mix, 5 pL. of cDNA, 2.5 puL of each primer,
0.6 uL of probe, and nuclease-free water. Thermal cycling conditions were as follows: 50 °C
for 2 min, 95 °C for 10 min, followed by 50 cycles of 95 °C for 15 s and 60 °C for 1 min.
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Primer and probe sequences specific to DROSHA, DGCRS, DICER1, TARBP2, AGO1,
and B-actin were designed using Primer Express 3.0 (Applied Biosystems, Thermo Fisher
Scientific, Waltham, MA, USA) and are listed in Table 2. In probe design, cytosine residues
were substituted with C-5-propynyl-dC (pdC) to enhance hybridization affinity and duplex
stability (increasing Tm by approximately 2-8 °C per substitution). Candidate oligonu-
cleotides were evaluated through NCBI BLAST (BLAST+; National Center for Biotechnol-
ogy Information, Bethesda, MD, USA) alignment to ensure target specificity, avoidance
of SNP-containing regions, and compatibility across transcript isoforms. Only sequences
demonstrating high theoretical specificity were synthesized. All assays were experimen-
tally validated using Total RNA Control (Applied Biosystems, Cat. No. 4307281), and
any primer—probe set failing to produce reproducible amplification was discarded. The
assays for DROSHA, DGCRS, and DICER1 had also been validated previously in an inde-
pendent peer-reviewed study [15], demonstrating robust amplification performance in a
separate patient cohort. In the present dataset, all five assays generated clear exponential
amplification curves with consistent Ct values across biological replicates, and no-template
controls remained negative. The use of TagMan chemistry with pdC-modified probes
further ensured high hybridization specificity and reliable amplification efficiency within
the tested dynamic range.

Table 2. Primer and probe sequences of miRNA biogenesis genes used in qRT-PCR.

Gene/ID Primers and Probe Sequences
F 5-GAACAGTTCAACCCCGATGTG-3'
DROSHA R 5-CTCAACTGTGCAGGGCGTATC-3/
29102 * PR 5'-FAM-TTA (pdC)TTTT(pdC)CGATTAT (pdC)GTC-ZN A4-
BHQ-1-3
DGCRS F 5-TCTTTGAATGTGAGAACCCAAGTG-3
54487 * R 5'-CCGTAAGTCACACCATCAATGG-3
PR 5-FAM-CCTTTTGGTGCCTCGGT-ZNA4-BHQ-1-3'
DICER1 F 5-CCCGGCTGAGAGAACTTACG-3'
23405 * R 5-TGTAACTTCGACCAACACCTTTAAAT-3
PR 5-FAM-CGGGAAGGT(pdC)AGAGT(pdC)A-ZNA4-BHQ-1-3/
TARBP? F 5-GAAGGCAGCCAAGCACAAG-3
26895 * R 5-CTCCCCCCTTTGAGGTGTTT-3
PR 5'-FAM-CAGCTGAGGTGGCCCTC-ZNA4-BHQ-1-3
AGO1 F 5-CAGCGACCACGGCAAGA-3
1126523 * R 5-AAACGGGTGGACTTGTAGAATTG-3'
PR 5'-FAM-CTA (pdC)ATGGTG(pdC)GTGAGC-ZNA4-BHQ-1-3'
F 5-GGCACCCAGCACAATGAAG-3'
B-actin R 5-GCCGATCCACACGGAGTACT-3'
(control) PR 5'-Yakima

Yellow-TCAAGATCATTGCTCCTCCTGAGCGC-BHQ-1-3

* Gene ID: http:/ /www.ncbi.nlm.nih.gov/gene (accessed on 1 December 2020). R: Reverse primer, F: Forward
primer, PR: Probe. C-pdC: 5-propynyl-dC.

While B-actin was selected as the reference gene based on previous hematologic studies,
possible variability within bone marrow tissue is acknowledged as a methodological
limitation of the study.

RNA integrity and purity were assessed using A260/280 ratios between 1.8 and 2.0.
Relative gene expression was calculated using the 2724Ct method. All gPCR reactions
were performed in duplicate, and specificity was ensured by the absence of nonspecific
amplification in negative controls and by uniform amplification kinetics across samples.
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2.4. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 10.0 (GraphPad Soft-
ware, San Diego, CA, USA) and Statistica 13.3.1 (StatSoft, Tulsa, OK, USA). Gene expression

data were analyzed using the 2~AA¢t

method, and results were expressed as relative fold
changes. Data distribution was evaluated using the Shapiro-Wilk test to determine normal-
ity. Because most variables did not meet normal distribution assumptions, nonparametric
tests were applied. Comparisons of miRNA biogenesis gene expression across AML, MDS,
and control groups were conducted using the Kruskal-Wallis test, followed by pairwise
Mann-Whitney U tests with Bonferroni adjustment for multiple comparisons. Given the
limited number of targeted biomarkers, no additional multiple-testing correction (e.g., FDR)
was applied beyond the Bonferroni adjustment, which is acknowledged as a statistical
limitation. Associations between gene expression and clinicopathologic features (WHO
subtypes, IPSS-R risk scores, and FAB categories) were assessed using the Kruskal-Wallis
or Mann- Whitney tests as appropriate.

Intergene relationships were explored using Spearman’s rank correlation analysis, and
results were visualized in correlation heatmaps to highlight co-regulatory patterns among
biogenesis components. To evaluate diagnostic performance, receiver operating charac-
teristic (ROC) curve analyses were performed for each gene using bootstrap resampling
(1000 iterations) to estimate 95% confidence intervals (CI) for the area under the curve
(AUC). Youden’s ] index was used to determine optimal cutoff values and corresponding
sensitivity and specificity.

A multigene logistic regression model incorporating all five genes was constructed to
assess integrated diagnostic performance. Model discrimination was evaluated using AUC
values, and comparisons with the best-performing single gene were tested using DeLong’s
test. Calibration quality was assessed by Brier scores and the Hosmer-Lemeshow goodness-
of-fit test, while visual calibration curves examined agreement between predicted and
observed probabilities. Decision Curve Analysis (DCA) was performed to estimate the net
clinical benefit across a range of threshold probabilities, providing insight into the potential
clinical utility of the multigene model. All tests were two-tailed, and a p-value < 0.05 was
considered statistically significant.

Additionally, an exploratory random forest model with SHAP interpretation was
implemented for MDS and AML versus controls to assess the gene-level diagnostic impact.
Models were trained on z score standardized expression data using 5-fold stratified cross
validation (AUC as metric). Findings were treated as hypothesis-generating due to the
limited control sample size.

3. Results
3.1. Expression Profiles of miRNA Biogenesis Genes in AML, MDS, and Control Groups

Relative expression levels of the key miRNA biogenesis genes (DICER1, DROSHA,
DGCRS, TARBP2, and AGO1) were evaluated across AML, MDS, and control samples using
the 2744Ct method. The comparative distribution of these genes is illustrated in Figure 1,
and the statistical results of Kruskal-Wallis and pairwise Mann-Whitney U analyses are
summarized in Table 3.

Overall, distinct expression patterns were observed among the three groups. DICER1
and DROSHA transcripts showed a consistent and statistically significant reduction in both
AML and MDS compared with controls (p < 0.05), suggesting global downregulation of the
early miRNA-processing machinery in myeloid malignancies. Similarly, TARBP2, a cofactor
essential for Dicer-mediated pre-miRNA cleavage, exhibited a marked decline in AML and
MDS relative to controls (p < 0.01), reinforcing the notion of coordinated impairment in
cytoplasmic miRNA maturation.
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Figure 1. Relative expression of miRNA biogenesis genes (DICER1, DROSHA, DGCR8, TARBP2, and
AGOT1) across AML, MDS, and control groups. Box plots show median and interquartile ranges of
2-BACt yalyes.
Table 3. Pairwise comparison of miRNA biogenesis gene expression levels among AML, MDS, and
control groups.

AML-
Gene Control MDS- AML- Interpretation
. Control (p.adj) MDS (p.adj)
(p.adj)
DICER1 0.028 * 0.019 * 0.642 ns Downregulated in AML and MDS vs. Control
DROSHA 0.031 * 0.025* 0.708 ns Decreased in AML and MDS vs. Control
DGCRS 0.008 ** 0.002 ** 0.371ns Variable expression; increased trend in AML
TARBP2? 0.005 ** 0.006 ** 0.541 ns Reduced in AML and MDS compared to Control
AGO1 0.093 ns 0.078 ns 0.885 ns No significant difference among groups

Values indicate Bonferroni-adjusted p-values (p.adj) (Mann-Whitney U test); p < 0.05 (*), p < 0.01 (**),
ns: not significant.

In contrast, DGCRS expression displayed a divergent trend. While MDS samples
showed relatively lower DGCRS8 expression compared with controls, AML cases exhibited
considerable inter-individual variability, with a subset demonstrating increased levels
(p < 0.01). This heterogeneity may indicate disease stage dependent deregulation of the
Microprocessor complex, potentially linked to altered pri-miRNA recognition or feedback
loops between DGCR8 and DROSHA.

No statistically significant difference was detected in AGO1 expression among the
three groups, implying that downstream AGO1-mediated RNA silencing is less affected in
the early and late stages of myeloid transformation.

Collectively, these results demonstrate that aberrant regulation of the Dicer/Drosha/
DGCRS axis constitutes a shared molecular feature of MDS and AML, while the persistence
of AGO1 expression may reflect a partial retention of post-transcriptional silencing capacity.
These findings highlight a disrupted miRNA-processing network that could contribute to
defective hematopoietic differentiation and malignant progression.

3.2. Clinical Associations of miRNA Biogenesis Gene Expression

The expression levels of DROSHA, DGCR8, DICER1, TARBP2, and AGO1 were evalu-
ated in relation to major clinicopathologic variables in both the MDS and AML cohorts.
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In the MDS group, gene expression levels were first compared across WHO subtypes
(MDS-SLD, MDS-RS-SLD, MDS-MLD, MDS-EB1, and MDS-EB-2); however, no statistically
significant differences were observed (p > 0.05 for all genes). Similarly, expression profiles
analyzed according to IPSS-R risk categories revealed no significant variation for DROSHA,
DICER1, TARBP2, or AGOL1. In contrast, DGCRS expression showed a significant stepwise
increase with higher IPSS-R risk levels (p = 0.008, Figure 2A), suggesting that enhanced
activity of the nuclear Microprocessor complex may accompany disease progression in
MDS. No significant associations were found between gene expression and bone marrow
blast percentage or number of cytopenias (all p > 0.05).
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Figure 2. Expression patterns of DGCR8 and TARBP2 across clinical subgroups of MDS and AML.
(A) DGCRS8 expression showed a significant stepwise increase with higher IPSS-R risk categories in
MDS (p = 0.008). (B) TARBP2 expression varied significantly among FAB subtypes in AML (p = 0.022).

In the AML cohort, miRNA biogenesis gene expression was assessed according to
FAB subtypes (M0-M6). Among the analyzed genes, only TARBP2 showed a statistically
significant difference across FAB categories (p = 0.022; Figure 2B), with a tendency toward
lower expression in more differentiated subtypes. Expression levels of DROSHA, DGCRS,
DICER1, and AGO1 did not differ significantly across FAB classes (all p > 0.05).

These findings indicate that while most miRNA biogenesis genes exhibit stable expres-
sion across clinical subgroups, DGCR8 in MDS and TARBP2 in AML display disease-related
transcriptional alterations that may be linked to disease severity or differentiation status.

3.3. Correlation Analysis Among miRNA Biogenesis Genes

Spearman correlation analysis, performed on all samples (MDS, AML, and controls
combined), revealed strong positive correlations among DROSHA, AGO1, and TARBP2
(r=0.44-0.82, p < 0.001), indicating coordinated regulatory behavior within the down-
stream steps of miRNA biogenesis. In contrast, DGCR8 showed moderate inverse correla-
tions with DROSHA and DICERI (r =~ —0.25 to —0.71, p < 0.05), suggesting a compensatory
mechanism within the Microprocessor complex. Figure 3 illustrates the complete correla-
tion structure, showing a distinct cluster of positively correlated genes centered around
DROSHA and AGO1. These associations imply that DROSHA / AGO1/TARBP2 function
as a co-regulated module that supports mature miRNA formation, while DGCR8 may act
through feedback control to maintain equilibrium in the biogenesis machinery.
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correlations; clustering among DROSHA-AGO1-TARBP2 contrasts with inverse associations of DGCR8

with DROSHA/DICERI.

3.4. Diagnostic Performance of miRNA Biogenesis Genes

To evaluate the diagnostic value of the five miRNA-biogenesis genes, ROC curve
analyses were performed for each gene in comparisons between disease groups and healthy
controls. The AUC values with 95% bootstrap confidence intervals, thresholds, and corre-
sponding sensitivities and specificities are presented in Table 4, and representative ROC
plots are shown in Figures 4-6. Bootstrap resampling (1000 iterations) confirmed the
stability of AUC estimates, producing narrow 95% confidence intervals for all genes.

Table 4. Diagnostic performance of miRNA-biogenesis genes in MDS and AML compared to controls.

AUC
AUC Criterion Sensitivity ~ Specificity
Gene MDS- AML-Control P Youden ] (2-4ACY) (%) (%)
Control
0.960 0.971
DGCRS (0.910-0.990) (0.925-0.995) <0.0001 0.8386 >1.993 98.15 85.71
0.866 0.950
<
DICER1 (0.810-0.970) (0.885-0.995) <0.0001 0.7646 <0.835 90.74 85.71
0.777 0.886
DROSHA (0.690-0.905) (0.810-0.960) <0.0001 0.5847 <0915 87.04 71.43
0.819 0.875
TARBP2 (0.650-0.890) (0.780-0.950) 0.018 0.6402 <0.692 92.59 71.43
AGO1 0-790 0836 <0.0001 0.5370 <0.831 53.70 100.00

(0.680—0.900)

(0.730-0.930)

AUC: 95% CIROC curve. Youden | index and optimal cutoff (criterion) were determined to maximize combined
sensitivity and specificity based on 2744t values.
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and TARBP2 distinguishing MDS-controls. The diagonal dashed line represents the reference line
indicating no discriminative ability (AUC = 0.5).
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Figure 5. Receiver operating characteristic (ROC) curves for DGCR8, DICER1, DROSHA, AGO1,
and TARBP2 distinguishing AML-controls. The diagonal dashed line represents the reference line
indicating no discriminative ability (AUC = 0.5).
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Figure 6. Receiver operating characteristic (ROC) curves for DGCRS, DICER1, DROSHA, AGO1, and
TARBP?2 distinguishing AML-MDS. The diagonal dashed line represents the reference line indicating
no discriminative ability (AUC = 0.5).

3.4.1. MDS and Control Comparison

All analyzed genes showed significant discriminatory ability between MDS patients
and healthy controls. Among them, DGCRS exhibited the highest diagnostic accuracy
(AUC = 0.960, p < 0.0001), followed by DICER1 (AUC = 0.866) and TARBP2 (AUC = 0.819).
DROSHA and AGO1 also demonstrated moderate but statistically significant diagnostic
power (AUC = 0.777 and 0.790, respectively). The curves indicate that DGCRS overexpres-
sion and the downregulation of other genes can effectively distinguish MDS cases from
healthy controls (Figure 4). The strong diagnostic performance of DGCRS and DICER1
supports their potential as early molecular indicators of disturbed miRNA biogenesis in
myelodysplasia.

3.4.2. AML and Control Comparison

Similarly, all five genes displayed substantial diagnostic value for differentiating AML
patients from controls. The highest AUCs were observed for DGCR8 (AUC = 0.971) and
DICER1 (AUC = 0.950), while TARBP2, DROSHA, and AGO1 showed slightly lower but still
significant accuracies (AUCs = 0.875, 0.886, and 0.836, respectively). These ROC patterns
reflect a consistent imbalance in miRNA processing genes across both MDS and AML
(Figure 5). The parallel diagnostic power of DGCR8 and DICER1 in AML suggests that
perturbations in early miRNA processing may accompany malignant transformation of
dysplastic clones.

3.4.3. AML and MDS Comparison

To investigate whether these genes could discriminate between AML and MDS, an
additional ROC analysis was performed. None of the five genes demonstrated meaningful
discriminative ability between the two diseases, with AUC values close to 0.5 for DGCRS,
DICER1, DROSHA, and AGO1, and a slightly lower AUC for TARBP2 (AUC = 0.296). This
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finding indicates that while expression profiles distinguish patients from controls, they do
not clearly separate AML from MDS (Figure 6). The absence of clear diagnostic separation
supports the view that dysregulation of miRNA biogenesis represents a shared molecular
feature of both disorders rather than a stage specific marker.

3.5. Multigene Logistic Model and Calibration Performance

The calibration performance of the multigene logistic regression model was evaluated
to assess the agreement between predicted probabilities and observed outcomes. As shown
in Figure 7, both MDS and AML models demonstrated good calibration, with data points
lying close to the ideal 45° line. This indicates that the predicted probabilities generated by
the five-gene model are well aligned with the actual frequency of disease, supporting the
reliability of this logistic model across probability ranges.

A. MDS vs Control B. AML vs Control
1.0f 1.0f
0.81 0.81
] &
e g
E 0.6 *E 0.6}
(3] (%]
> >
(V] (]
° °
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(%) (%)
o) Qo
o o
0.2t 0.2r
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability Predicted probability

Figure 7. Calibration plots for the multigene logistic model in MDS and AML. (A) MDS vs. Control.
(B) AML vs. Control. The diagonal line indicates perfect calibration between predicted probabilities
and observed event rates. The diagonal line indicates perfect calibration. Each “x” symbol represents
the observed event rate plotted against the corresponding predicted probability for each risk group.

Opverall, ROC analyses highlight DGCR8 and DICER1 as reliable diagnostic indicators
of myeloid neoplasia, although their expression fails to discriminate between disease stages.

3.6. Model Validation and Clinical Utility Analysis

To further evaluate the diagnostic robustness of the integrated model, a multigene
logistic regression analysis was performed incorporating DROSHA, DGCRS8, DICERI,
TARBP2, and AGO1. Compared to the best-performing single gene, the multigene model
achieved higher overall discriminative power in both MDS and AML cohorts. The model
yielded an AUC of 0.978 for MDS and 0.982 for AML, indicating excellent diagnostic
accuracy. When compared with the top single gene (DGCRS8), DeLong’s test confirmed
a statistically significant improvement in predictive performance (MDS: p < 0.001; AML:
p = 0.004), supporting the additive effect of combining multiple miRNA-biogenesis genes
(Table 5, Figure 8A,B).

The Brier score and Hosmer-Lemeshow (HL) test were applied to assess the model’s
calibration accuracy. Both cohorts showed low Brier scores (MDS: 0.08; AML: 0.07) and
non-significant HL p-values (MDS: p = 0.42; AML: p = 0.38), demonstrating good agree-
ment between predicted probabilities and observed outcomes (Table 5). To explore the
potential clinical applicability, Decision Curve Analysis (DCA) was performed. As shown
in Figure 9A,B, the multigene model consistently provided a higher net clinical bene-
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fit across a broad range of threshold probabilities compared with “treat-all” and “treat-

none” strategies.

Table 5. Summary of multigene model validation and calibration performance.

AUC
Cohort Model Best Single Best Single  Difference DeLong Brier Score HL HL
Comparison AUC gene Gene AUC (Model- p-Value X2 (df) p-Value
Best)
MDS-
0.978 DGCRS 0.964 +0.014 <0.001 0.08 6.12 (8) 0.42
Control
AML-
0.982 DGCRS8 0.971 +0.011 0.004 0.07 7.04 (8) 0.38
Control
AUC = Area under the ROC Curve; HL = Hosmer-Lemeshow goodness of fit test.
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0.0f —— Best single gene (DGCR8) (AUC=0.891) 0.0} ¥ —— Best single gene (DGCR8) (AUC=0.900)
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Figure 8. ROC curve comparison of multigene model and single gene. (A) ROC curves for MDS-
control. (B) ROC curves for AML-control. Curves compare the multigene logistic model (DROSHA,
DGCRS, DICER1, TARBP2, and AGO1) with the best single gene (DGCRS). Gray dotted lines indicate
gridlines added for visual guidance.
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Figure 9. Decision curve analysis (DCA) of multigene model and single gene. (A) DCA for MDS
versus control. (B) DCA for AML versus control. Curves show the clinical net benefit of the multigene
model compared with the best single gene (DGCR8) and reference strategies (“treat-all”, “treat-none”).

This suggests that integrating these five miRNA biogenesis genes into a composite
model may offer superior clinical utility and better patient stratification than any single
gene-based approach. Overall, the combined model not only improved diagnostic accuracy
but also demonstrated promising translational potential for future clinical implementation.
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3.7. Random Forest and SHAP (SHapley Additive exPlanations) Analysis

To complement conventional statistical analyses, an exploratory machine learning
approach was performed using a random forest classifier with SHAP interpretation to
further evaluate the individual diagnostic contribution of miRNA biogenesis genes. Sep-
arate models were developed for MDS versus controls and AML versus controls using
the expression levels of DROSHA, DGCRS8, DICER1, TARBP2, and AGO1 as predictors.
Gene expression data were standardized and model performance was assessed using 5-fold
stratified cross-validation, with AUC as the primary evaluation metric.

The models showed high discriminative performance (AUC = 0.94 for MDS and 1.00
for AML). In the MDS model, DGCRS8 was the most influential classifier component, fol-
lowed by TARBP2 and DICER1, whereas AGO1 contributed minimally. In the AML model,
DGCR8 and DICER1 consistently ranked as the strongest predictors, with DROSHA and
TARBP2 having moderate impact. These machine learning findings were consistent with
the ROC analysis and further confirmed by SHAP dependence plots, which demonstrated
positive shifts in model output with increased DGCR8 (MDS) or DICER1 (AML) expression
(Supplementary Figures S1-53).

Given the limited number of controls and potential risk of model overfitting, these
results are considered exploratory and hypothesis-generating and should be interpreted
with caution.

4. Discussion

Our study demonstrates significant disruptions in several key miRNA biogenesis
genes (DROSHA, DGCRS, DICER1, TARBP2, and AGO1) in MDS and AML. The coordinated
dysfunction of these genes points to a broader defect in miRNA maturation, contributing
to impaired hematopoiesis and leukemogenesis. This aligns with a growing body of
evidence suggesting that myeloid malignancies arise from multi-layered disruptions in
cellular processes, including the deregulation of miRNA biogenesis and the loss of miRNA-
dependent post-transcriptional control over hematopoietic differentiation [1-3].

The reduced expression of DROSHA and DICER1 in MDS and AML is consistent
with their established roles in initiating pri-miRNA cleavage and processing, respectively.
As both enzymes are essential for miRNA maturation, their downregulation leads to
global miRNA depletion, disrupting tumor suppressive pathways and favors clonal ex-
pansion. Consistent with previous reports of their association with poor prognosis in
solid tumors [16], our findings extend the relevance of DICER1 and DROSHA alterations
to hematologic malignancies as well. Our study further expands this understanding by
showing that dysregulation of DICERT and DROSHA is a common feature in hematologic
malignancies, not only in myeloid neoplasms but also in lymphoid disorders such as
Hodgkin lymphoma [17]. Additionally, DICER1 deficiency in stromal cells has been shown
to contribute to premature senescence and diminished support for hematopoietic stem
cells, which may further impair the marrow niche and enhance the leukemic potential
of the disease [7,18]. Moreover, pan-cancer studies have identified significant variations
in the expression of miRNA-processing genes, including DICER1, DGCRS, and TARBP2,
across multiple malignancies, reinforcing the importance of miRNA biogenesis defects in
neoplastic progression [19].

Interestingly, DGCRS expression showed a progressive increase across higher-risk
IPSS-R categories in MDS patients, suggesting a potential compensatory activation of the
miRNA biogenesis pathway in response to disease progression. Consistent with reports
linking DGCRS activity to stem cell self-renewal and malignant transformation [9,10] and its
association with stemness, DNA damage tolerance, and drug resistance phenotypes [20], its
progressive upregulation in higher-risk MDS may reflect an adaptive mechanism aimed at
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sustaining minimal miRNA processing capacity under oncogenic stress, thereby supporting
the persistence of undifferentiated progenitor cells. This pattern may represent an adaptive
mechanism to maintain miRNA processing activity under oncogenic stress; however, this
hypothesis requires confirmation through experimental studies.

TARBP2 downregulation, particularly in the AML subtypes, further supports our
hypothesis that miRNA biogenesis defects contribute to leukemogenesis. TARBP2 stabilizes
Dicer, and its loss has been linked to impaired miRNA maturation and increased miRNA
turnover. Recent studies have shown that TARBP2 plays a pivotal role in controlling
miRNA levels by interacting with both miRNA processing complexes and exoribonucleases,
which is critical for maintaining cellular homeostasis [21]. While early claims of TARBP2
mutations in cancers were later retracted [22], our results point to TARBP2 deficiency as a
major contributor to the impaired miRNA landscape observed in myeloid malignancies.

Unlike the upstream processing components, AGO1 expression remained relatively
stable among our patient groups. AGO1, a core component of the RISC, is essential for
miRNA-mediated gene silencing. Its stable expression of AGOI may suggest partial preser-
vation of miRNA-guided repression despite overall miRNA depletion. Interestingly, AGO1
is also involved in chromatin associated RNA interference, which links post-transcriptional
regulation to transcriptional control and epigenetic remodeling [14]. In hematologic malig-
nancies, alterations in AGO1 function could potentially contribute to the dysregulation of
hematopoietic gene expression by influencing chromatin architecture and transcriptional
reprogramming, thus contributing to leukemic transformation [21]. Correlation analysis
further supported a coordinated behavior among DROSHA, TARBP2, and AGO1, indicat-
ing a partially preserved cytoplasmic processing module despite upstream disruptions in
DROSHA and Dicer. However, these correlations represent associative patterns only and
should not be interpreted as evidence of direct causal relationships between gene dysreg-
ulation and disease status. Its stable expression may reflect partial preservation of RISC
activity despite upstream impairment, although this interpretation remains speculative
without functional validation.

Despite these molecular insights, the impact of AGO1 gene deregulation in hemato-
logic cancers is not fully understood. While AGO1 mutations have not been conclusively
identified in MDS or AML, its dysregulated silencing could disturb gene expression net-
works critical for hematopoietic differentiation and leukemogenesis, further highlighting
the complexity of miRNA regulation in malignancies.

Our study also highlights the utility of miRNA biogenesis gene expression as a di-
agnostic tool. DICER1 and DGCRS emerged as key biomarkers, with strong diagnostic
discrimination between patients and controls. The ROC analyses revealed high sensitivity
against controls, indicating that these genes may serve as useful biomarkers for distinguish-
ing patients from healthy individuals; however, they do not demonstrate discriminatory
power between AML and MDS [23]. The multigene model integrating all five genes signifi-
cantly improved both diagnostic power and calibration, reinforcing the potential value of a
multi-gene signature for assessing disease risk. However, consistent with our ROC analyses,
none of the analyzed genes clearly differentiated AML from MDS patients, suggesting
that defective miRNA biogenesis represents a shared molecular hallmark rather than a
disease stage specific alteration. This multi-gene signature may complement traditional
cytogenetic and morphologic diagnostic criteria, offering a more precise risk stratification
tool for clinical practice. Taken together, the progressive increase in DGCR8 expression in
high-risk MDS may reflect an adaptive response that enables malignant progenitor cells
to maintain minimal miRNA-processing capacity, supporting clonal persistence despite
upstream processing defects. Such compensatory activation may contribute to progression
toward more aggressive disease phenotypes. Our exploratory machine learning analyses
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(random forest and SHAP) were consistent with these observations, highlighting DGCR8
and DICERI as the strongest contributors to diagnostic separation, with DGCRS8 remain-
ing the leading classifier in MDS. Although these trends support the robustness of the
observed expression patterns observed, gene-specific variability and the limited cohort
size indicate that these results should be interpreted with caution. External validation
in independent cohorts will be essential to confirm the diagnostic generalizability of this
multi-gene signature.

Supporting these findings, both random forest and SHAP analyses further confirmed
the dominant diagnostic contribution of DGCR8 and DICERI in AML, while in MDS,
DGCRS8 remained the leading contributor, followed by TARBP2 and DICERI at moderate
levels (Supplementary Figures S1-53). Although AUC values were high, gene-specific vari-
ations in sensitivity and specificity were observed, likely reflecting molecular heterogeneity
and the limited sample size. These findings were further supported by machine learning
analyses; however, external validation is required to confirm diagnostic generalizability.
Therefore, the conclusions regarding clinical applicability should be considered preliminary.
Prospective validation in larger, independent cohorts will be necessary to assess real-world
diagnostic performance and reproducibility of the five-gene signature.

Looking forward, miRNA-based therapies targeting upstream steps of miRNA
processing—such as Dicer and DGCR8—may offer novel therapeutic approaches for hema-
tologic malignancies characterized by impaired miRINA biogenesis. Recent preclinical
studies have shown promising results in restoring Dicer activity or supplementing tumor-
suppressive miRNAs in cancer models [17,24]. These strategies could support precision-
medicine approaches tailored to patients with defective miRNA-processing machinery.
Additionally, large language models (LLMs) are increasingly being explored in biomedical
sciences and may eventually assist in interpreting complex molecular profiles. Nonetheless,
their use in hematologic disease diagnostics remains experimental and requires validation
in larger datasets before clinical integration. Future studies should also explore whether
combining mature miRNA-expression profiles with biogenesis-gene signatures enhances
diagnostic or prognostic accuracy.

Our study is limited by its cross-sectional design, which does not allow for longitudinal
monitoring of miRNA-biogenesis changes over time. Longitudinal follow-up from MDS
to AML would help clarify how alterations in miRNA processing contribute to disease
progression. Furthermore, the use of total RNA extraction from bone marrow samples
does not capture cell-type-specific regulatory dynamics, and single-cell analysis could
provide deeper biological insight. In particular, the limited size of the control group may
have affected the robustness of ROC estimates and should be interpreted with caution.
As this was a transcript-level expression study without functional validation, we could
not directly determine whether dysregulation of DROSHA, DICER1, or TARBP?2 alters
hematopoietic differentiation, miRNA processing efficiency, or downstream signaling
pathways. Functional assays (e.g., knockdown or overexpression models) will therefore
be important in future studies to validate the pathogenic impact of these key biogenesis
genes. Moreover, the study lacks an independent external validation cohort, which limits
the generalizability of the observed diagnostic performance. Although the findings are
promising, the absence of external validation means that we cannot confidently extrapolate
these results to broader patient populations. Validation in larger, externally recruited
datasets will therefore be essential to confirm reproducibility and clinical applicability.

Future investigations integrating small-RNA sequencing, functional-validation assays,
and external validation in independent cohorts will be crucial to confirm these mecha-
nistic implications and provide a more comprehensive understanding of the regulatory
consequences of impaired miRNA biogenesis. Additionally, future studies should aim to
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replicate these findings in independent cohorts and further investigate the diagnostic per-
formance of the identified biomarkers in diverse clinical settings. Adjustment for potential
clinical confounders (e.g., age, cytogenetic abnormalities, comorbidities) was restricted by
data availability and should be considered when interpreting the diagnostic results.

5. Conclusions

Our findings demonstrate that dysregulation of key miRNA biogenesis genes, particu-
larly DROSHA, DICER1, DGCRS8, and TARBP2, is associated with hematopoietic disruption
in newly diagnosed MDS and AML patients. The coordinated alterations observed suggest
that impaired miRNA processing may contribute to leukemogenesis through disruption of
post-transcriptional regulatory pathways. While DGCR8 and DICER1 emerged as promis-
ing diagnostic indicators, particularly in AML, the observed variability in gene-specific
sensitivity and specificity, together with the limited size of the control cohort, indicates that
these results should be interpreted with caution. The multigene expression model provided
enhanced discriminative capacity compared to single genes, supporting the potential utility
of miRNA biogenesis signatures in refinement of diagnostic assessment. However, due to
the absence of functional validation and external cohort testing, the clinical applicability
of this signature remains preliminary. As noted in the Discussion, the lack of an external
validation cohort is a key limitation, and replication in independent, larger cohorts remains
essential to confirm the diagnostic performance and generalizability of our findings.

Furthermore, although this study provides valuable insights into miRNA-biogenesis
disruption in myeloid malignancies, the absence of functional assays limits our ability
to directly assess the impact of these changes on downstream hematopoietic pathways.
Future investigations integrating functional assays, small-RNA sequencing, and valida-
tion in independent, larger cohorts will be critical to establish the clinical value of these
biogenesis-related molecular markers. If confirmed, such insights may support the devel-
opment of targeted therapeutic strategies aimed at restoring miRNA-processing fidelity in
hematologic malignancies.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /biomedicines13123082/s1, Figure S1: Random forest feature
importance analysis for miRNA biogenesis genes in MDS and AML versus controls. Bars represent
the relative contribution of each gene (DICER1, DROSHA, DGCRS8, AGO1, and TARBP2) to the
classification model. DGCRS exhibited the strongest diagnostic relevance in both models, followed by
TARBP2? and DICER1 in MDS, and DICER1 in AML. Figure S2: SHAP dependence plot for DGCRS in
the MDS versus control model. Each point represents an individual sample. The x-axis shows DGCR8
expression (2~24Ct) and the y-axis displays the corresponding SHAP value. The color scale indicates
DICERI1 expression levels, illustrating the joint influence of DGCRS and DICER on disease probability.
Figure S3: SHAP dependence plot for DICER1 in the AML versus control model. The x-axis shows
DICER1 expression (2~22Ct) and the y-axis the associated SHAP impact. The color gradient reflects
DGCRS8 expression, highlighting the interaction between DICER1 and DGCRS in the prediction of
AML classification.
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